Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Selected Areas in Cryptography '04 University of Waterloo (Canada), August 9, 2004

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

	ð	
	÷.	
5		^a

Outline of this talk

- Preliminaries
- MDS Matrices ...
- ... and their Implementation
- Bi-Regular Arrays
- Some New Constructions

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Back to Shannon

- Notions of confusion and diffusion introduced by Shannon in "Communication Theory of Secrecy Systems" (1949)
- Confusion: "The method of confusion is to make the relation between the simple statistics of E_K(.) and the simple description of K a very complex and involved one."
- Diffusion: "In the method of diffusion the statistical structure of M which leads to its redudancy is dissipated into long range statistics – i.e., into statistical structure involving long combinations of letters in the cryptogram."

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

Confusion

- Notion of confusion nowadays related to the ones of
 - S-Box
 - non-linearity
 - Boolean functions
 - algebraic attacks
- Plenty of academic papers on this subject !

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Diffusion : Historical Perspectives

- Less studied in a rigorous (mathematical) way until mid of 90's
- Schnorr-Vaudenay (FSE'93 / EUROCRYPT'94) : introduction of the concept of multipermutation
- Vaudenay (FSE'95) : a *linear* multipermutation is equivalent to an MDS code
- Daemen (PhD thesis, 1995): Wide-Trail Strategy
 - (Choose "good" S-boxes)
 - "Design the round transformation in such a way that only trails with many S-boxes occur."
- Rijmen, Daemen, Preneel, Bossalaers, De Win (FSE'96): design of SHARK whose diffusion layer is based on MDS codes

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

> ∢⊡⊅ ∢⊒∍

Multipermutation Nowadays

- Very few MDS codes are known
- Seldom used in practice
- Widely spread building block in symmetric schemes
- Non-linear multipermutation: CS-Cipher
- Linear multipermutation (MDS matrices): AES, Camellia, Twofish, Khazad, FOX, and many, many others !

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

< A >

In this Talk

- Interested in "efficient" linear multipermutations
- Brief recall about MDS matrices and their properties
- Definition of what we mean by "efficient"
- New propositions

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Multipermutation: a Definition

Definition (Multipermutation)

A diffusion function f from \mathcal{K}^p to \mathcal{K}^q is a *multipermutation* if for any $x_1, \ldots, x_p \in \mathcal{K}$ and any integer r with $1 \le r \le p$, modifying r input values on $f(x_1, \ldots, x_p)$ results in modifying at least q - r + 1 output values. Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

Multipermutation: Another Definition

Definition (Multipermutation)

A diffusion function *f* from \mathcal{K}^p to \mathcal{K}^q is a *multipermutation* if the set of all words consisting of x_1, \ldots, x_p concatenated with $f(x_1, \ldots, x_p)$ is a code of $(\#\mathcal{K})^p$ words of length p + q with minimal distance q + 1.

Matches the Singleton bound (hence the link to MDS codes)

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

Multipermutation: Example

Representation of the finite field GF(2⁸) : polynomials of degree at most seven with coefficients in GF(2) modulo the irreducible polynomial

$$p(\xi) = \xi^8 + \xi^7 + \xi^6 + \xi^5 + \xi^4 + \xi^3 + 1$$

- Addition: XOR
- Multiplication: usual multiplication of polynomials modulo p(ξ)
- Consider the following multipermutation on GF(2⁸)²:

$$\mu: \left(\begin{array}{c} \mathbf{x}_1\\ \mathbf{x}_2 \end{array}\right) \mapsto \left(\begin{array}{c} \mathbf{y}_1\\ \mathbf{y}_2 \end{array}\right) = \left(\begin{array}{c} \mathbf{1} & \xi\\ \mathbf{1} & \mathbf{1} \end{array}\right) \times \left(\begin{array}{c} \mathbf{x}_1\\ \mathbf{x}_2 \end{array}\right)$$

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

< A >

Why is it a Multipermutation ?

• Because μ is invertible :

$$\begin{pmatrix} 1 & \xi \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \xi^7 + \xi^5 + \xi^3 & \xi^7 + \xi^5 + \xi^3 + 1 \\ \xi^7 + \xi^5 + \xi^3 & \xi^7 + \xi^5 + \xi^3 \end{pmatrix}$$

Because, when fixing x₁ to a constant c, both y₁ and y₂ are permutations of x₂:

$$y_1 = c \oplus (\xi \cdot x_2)$$

$$y_2 = c \oplus x_2$$

Because, when fixing x₂ to a constant c, both y₁ and y₂ are permutations of x₁:

$$y_1 = x_1 \oplus (\xi \cdot c)$$

$$y_2 = x_1 \oplus c$$

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

Why is it a Multipermutation (2)?

Because det(µ) ≠ 0 and every sub-determinant of µ is different of 0.

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□</li

32/64-bit Architectures

- Lot of fast memory (L1 cache)
- Table lookups + XORs:

$$\left(\begin{array}{c} y_1\\ y_2\end{array}\right) = x_1 \times \left(\begin{array}{c} 1\\ 1\end{array}\right) \quad \oplus \quad x_2 \times \left(\begin{array}{c} \xi\\ 1\end{array}\right)$$

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

8-bit Architectures

- ► Less memory at disposal → complete precomputation is impossible!
- The matrix elements value matters !
- Multiplications by 1 are "free" operations
- Possible to precompute the operation "multiplication by a constant c"

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Our strategy

- Maximize the number of 1's in the matrix.
- Minimize the number of different constants.
- Two criteria ...
- ... among infinitely many others !
- Corollary (and disclaimer) : it is always possible to find an architecture and side constraints such that our strategy leads to poor results.
- One of the constraints we did **not** consider: inverse of a matrix must be "efficient" as well.

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Conf<u>usion</u>

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

< A >

Results

- Definition of the concept of "bi-regular array"
- Find the minimal amounts of 1's and of different coefficients for bi-regular arrays
- \blacktriangleright Sequence of constructive proofs \rightarrow matrix skeletons
- Examples of matrices

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays

Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Bi-Regular Arrays

► A 2 × 2 array with entries in *K* is *bi-regular* if at least one row **and** one column have two different entries.

- A q × p array with entries in K is *bi-regular* if all 2 × 2 sub-arrays are bi-regular.
- An MDS matrix must be a bi-regular array ...
- ... but the converse is not true !

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

From Bi-Regular Arrays to MDS Matrices

- Construct a bi-regular array with large number of 1's and small number of different coefficients.
- Find a suitable set of coefficients (if possible).

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Highest Possible Number of 1's

Summary of our results

	2	3	4	5	6	7	8
2	3	4	5	6	7	8	9
3	4	6	7	8	9	10	11
4	5	7	9	10	12	13	14
5	6	8	10	12	13	14	17
6	7	9	12	13	16	18	19
7	8	10	13	14	18	21	22
8	9	11	14	17	19	22	24

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

◆□ ◆◎ ◆ 三 ◆ 三 ◆ 三 ◆ 三 ◆ ○ ◆

Lowest Possible Number of Different Coefficients

Summary of our results

	2	3	4	5	6	7	8
2	2	2	2	3	3	3	3
3	2	2	3	3	3	3	2
4	2	3	3	3	4	4	4
5	3	3	3	3	4	4	4
6	3	3	4	4	4	4	5
7	3	3	4	4	4	4	5
8	3	4	4	4	5	5	5

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementatior 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

ð	

A (4, 4)-Multipermutation

Example of "optimal" 4 × 4-matrix

- 9 coefficients equal to 1, 3 different values
- Used as diffusive component in the round function of FOX64

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks

A Circulating-Like (8,8)-Multipermutation

Example of a "non-optimal" 4 × 4-matrix

 Used as diffusive component in the round function of FOX128 Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

> ∢ ⊡ ≯ ∢ ≣ ≯

A (8,8)-Multipermutation with Rectangle Patterns

Example of a "partially optimal" 8 × 8-matrix

- Optimal number of different coefficients
- Non-optimal number of 1's

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Thank You !

See you in 25 minutes for the presentation of

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

Preliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

.. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

	ð	
	a	\sim

Any Question ?

Perfect Diffusion Primitives for Block Ciphers

Building Efficient MDS Matrices

Pascal Junod and Serge Vaudenay

^areliminaries Diffusion / Confusion

MDS Matrices ... Multipermutation

. and their Implementation 32/64-bit Architectures 8-bit Architectures

Bi-Regular Arrays Our Results Definition

Some New Constructions (4, 4)-Multipermutation (8, 8)-Multipermutation

Concluding Remarks