On the complexity of Matsui's attack against DES

Pascal Junod, pascal.junod@epfl.ch

SAC'01, Toronto - Canada

Outline

Matsui's linear cryptanalysis against 16-rounds DES, as proposed at Crypto'94.

- Historical Overview
- Experimental Results
- Theoretical Analysis
- Conclusion
SAC'01, Toronto - Canada

Linear Cryptanalysis Performances: Historical Overview

- [Matsui, Eurocrypt'93, Crypto'94] Linear cryptanalysis, first experimental implementation
- [Blöcher-Dichtl, FSE'94] Some observations on the application of the piling-up lemma
- [Nyberg, Eurocrypt'94] Linear hull concept
- [Harpes-Kramer-Massey, Eurocrypt'95] Generalization of linear cryptanalysis
SAC'01, Toronto - Canada

Linear Cryptanalysis Performances: Historical Overview

- [Vaudenay, 1995] Statistical cryptanalysis concept
- [Kukorelly, 1999]Theoretical study on the piling-up Iemma application
- [Selçuk, Indocrypt'00] Bias estimation in linear cryptanalysis

Experiment Description

- Matsui attack has been implemented using today's technology
- Fast DES routine (bitsliced implementation on the Intel MMX architecture)
- Idle time of 12-18 CPUs
- 3-7 days to produce and analyze 2^{43} known pairs
- The experiment has run 21 times

Experimental Results (1)

- Widely accepted attack complexity: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85% within $\mathcal{C}_{(0.85)}^{e s t}=2^{43}$ DES computations.

Experimental Results (2)

- Real complexity $\mathcal{C}_{(0.85)}$ seems to be lower (logarithmic scale):

- Experimental results suggest: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85% within $\mathcal{C}_{(0.85)}=2^{41}$ DES computations.

Experimental Results (3)

Other experimental results:

- Given 2^{43} known pairs, $\mathcal{C}_{(0.5)} \approx 2^{38.5}$.
- Given $2^{42.5}$ known pairs, $\mathcal{C}_{(0.5)} \approx 2^{42}$.
- Given 2^{40} known pairs, $\mathcal{C}_{(0.5)} \approx 2^{51.5}$.

Analysis (1)

- Linear expression : $P_{\left[i_{1}, \ldots, i_{r}\right]} \oplus C_{\left[j_{1}, \ldots, j_{s}\right]}=K_{\left[k_{1}, \ldots, k_{t}\right]}$
- The expression must be biased in order to be useful: $\operatorname{Pr}\left[\right.$ Expression holds] $=\frac{1}{2}+\epsilon,|\epsilon|>0$.
- Wrong-key randomization hypothesis:

$$
\frac{\left.\left\lvert\, \operatorname{Pr}[\text { Expression holds } \mid \text { right key }]-\frac{1}{2}\right. \right\rvert\,}{\left.\left\lvert\, \operatorname{Pr}[\text { Expression holds } \mid \text { wrong key }]-\frac{1}{2}\right. \right\rvert\,} \gg 1
$$

Analysis (2)

- Assumption 1: Bias produced by a wrong key is independent of the key
- Assumption 2: Bias produced by the right key is independent of the ones produced by wrong keys
- Assumption 3: The distribution of the biases is well approximated by a normal law

Analysis (3)

SAC'01, Toronto - Canada

Analysis (4)

- Counting / Analysis / Sorting / Searching phases
- Success Probability : key bits sum guessing, success within a given complexity
- Complexity is function of the right subkey rank Ψ in the candidates list
- $n-1$ wrong candidates follow a probability density f_{W}, the right one follows f_{R}.

Analysis (5)

Theorem 1

$$
\operatorname{Pr}[\psi \leq \psi]=\int_{-\infty}^{+\infty} B_{n+1-\psi, \psi}\left(F_{W}(x)\right) f_{R}(x) d x
$$

and

$$
E[\Psi]=1+n\left(1-\int_{-\infty}^{+\infty} f_{R}(x) F_{W}(x) d x\right)
$$

where

$$
B_{a, b}(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

is the incomplete beta function of order (a, b).

Analysis (6)

Theoretical rank distribution ($\epsilon_{w}=0$ and $\epsilon_{R}=$ piling-up approximation) for various amounts of known pairs.

SAC'01, Toronto - Canada

Analysis (7)

Some observations:

- Wrong-key randomization hypothesis holds well
- $\hat{\epsilon}_{r}-\epsilon_{r}$ is small (piling-up lemma approximation is OK, no linear hull effect)
- $\widehat{\epsilon}_{w} \neq 0$, but it doesn't matter a lot
SAC'01, Toronto - Canada

The experimental variances are smaller than the expected ones.

SAC'01, Toronto - Canada

Conclusion

- Experimental complexity analysis
- Theoretical analysis
- Partial inacurracy of the model explained by experimental observations

