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Abstract. Klimov and Shamir proposed a new class of simple crypto-
graphic primitives named T-functions. For two concrete proposals based
on the squaring operation, a single word T-function and a previously
unbroken multi-word T-function with a 256-bit state, we describe an ef-
ficient distinguishing attack having a 232 data complexity. Furthermore,
Hong et al. recently proposed two fully specified stream ciphers, consist-
ing of multi-word T-functions with 128-bit states and filtering functions.
We describe distinguishing attacks having a 22? and a 23*
ity, respectively. The attacks have been implemented.
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1 Introduction

Binary additive stream ciphers encrypt a plaintext stream by combining it with
a key stream by means of an XOR operation (the decryption simply being the
XOR of the key stream with the ciphertext stream). The key stream consists
of a pseudo-random bit sequence usually generated by iteration of an update
function, the latter being initialized with a secret state. One expects that the
sequence generated by a cryptographically secure stream cipher is statistically
indistinguishable from a truly random sequence (and this for any adversary with
some limited computational power), and that there exists no key-recovery attack
better than brute-force.

Recently, Klimov and Shamir [6-10] proposed a new framework for highly
efficient mappings which could be used as primitives in stream ciphers and
other cryptographic schemes. These primitives consist of triangular functions
(T-functions) which are built with help of fast arithmetic and Boolean oper-
ations widely available on high-end microprocessors or on dedicated hardware

* Reprint from: S. Kiinzli, P. Junod and W. Meier. Distinguishing Attacks on T-
functions. In E. Dawson and S. Vaudenay, editors, Progress in Cryptology - Mycrypt
2005, First International Conference on Cryptology in Malaysia, Kuala Lumpur,
Malaysia, September 28-30, 2005. Proceedings, volume 3715 of Lecture Notes in Com-
puter Science, pages 2 15. Springer-Verlag, 2005.



implementations; these mappings come with provable properties such as invert-
ibility and a single-cycle structure. As an example, the mapping TF-0 is proposed
in [7], which is defined by = + 2+ (22 C) mod 2" for an n-bit state z and with
C =5,7 (mod 8). As the maximal length of a cycle may be too short for typical
values of n (e.g. n = 64), and as state-recovery attacks have been described [2,8],
TF-0 is not meant to be directly used for cryptographic purposes. Considering
cryptographic applications, several efficient multi-word T-functions are proposed
in [9]. Some of these proposals have been broken by Mitra and Sarkar [13] using
time-memory tradeoffs. Based on the results of Klimov and Shamir, a new class
of multi-word T-functions and two fully specified stream ciphers have been pro-
posed by Hong et al. [3,4]. Their schemes TSC-1 and TSC-2 have a transparent
design and allow for some flexibility.

1.1 Contributions of this Paper

In this paper, we analyse several proposals of T-functions and exhibit substantial
weaknesses in some of these constructions. The flaws are extended to dedicated
attacks.

First we analyse the statistical properties of the pure square mapping, which
allows us to find an efficient distinguisher (with an expected 232 data complexity)
on TF-0 as well as on a previously unbroken multi-word mapping described in [9]
and labeled here as TF-Om, both based on the squaring operation. TF-Om oper-
ates on a 256-bit state and the output sequence consists of the 32 most significant
bits.

Then, we cryptanalyse the TSC-family of stream ciphers [4], which operates
on a 128-bit state and outputs 32 bits of the state using a filtering function. We
find a very efficient distinguisher for TSC-1 with an expected 222 data complexity;
for TSC-2, we describe a different distinguishing attack with an expected 234 data
complexity.

To confirm our theoretical results, the distinguishing attacks have been im-
plemented and run many times with success. Our distinguishers have a negligible
error probability and a remarkably small time complexity.

1.2 Notational Conventions

We analyse cryptographic schemes consisting of an internal state z € X', an
update function f : X — X and an output function g : X — Y. In the case where
time instants are relevant, we will denote x* the state at time ¢ (distinction of
powers will be clear from the context). Hence, the iterative scheme maps the state
2! to 2t = f(2!) and outputs y' = g(z?). The seed of the iteration is obtained
from the secret key with help of a key scheduling process. The keystream K
consists in the concatenation of successive outputs, namely K = y°||y*||---.

We assume throughout this paper the threat model of a known-plaintext
attack, i.e., we assume to know some part of the keystream K. Qur purpose
is then to distinguish K from a uniformly distributed random sequence, or to
recover the state at any time.



In the case where the state is a vector formed by some words, we will denote
a single word by z; and the state as = (29, z1,...). Adopting the common
notation, [x]; is the (i + 1)-st least significant bit-slice of the state, [x]o denoting
the rightmost bit-slice. Consequently, [z;]; is the (i + 1)-st least significant bit
of word j. The operation msb,,(z) states for the m most significant bits of .
Arithmetic operations are performed modulo 2" with typical word size n = 32
or 64 bit. Boolean operations are performed on all n bits in parallel and are
denoted by A (AND), V (OR), and by @ (XOR). Finally, <« k denotes a cyclic left
shift by k positions.

3

2 Cryptanalysis of Square Mappings

Klimov and Shamir have proposed different types of T-functions based on the
squaring operation [7,9]. After introducing the framework of this section, we
focus on the pure square mapping and derive a hypothesis about their proba-
bility distribution. This distribution is used in order to distinguish the proposed
mappings TF-0 and TF-Om with significant advantage.

Let us consider a scheme which consists of an update function f and an
output function g with the notation of Sect. 1.2. Let us further define the random
variables X and X’ over the set X = {0,1}", with uniformly distributed X and
with X’ = f(X). Equivalently, Y and Y’ are random variables over Y = {0,1}™
with uniformly distributed Y and with Y’ = g(f(X)). Given Pry, Pry: and
some uniform random or pseudo-random output respectively, we can perform a
statistical test (e.g. a Neyman-Pearson test, see Appendix A for more details)
in order to assign the output to a distribution. We are interested in the overall
complexity of the distinguisher corresponding to some designated overall error
probability 7.

For small® word sizes n, the distribution Pry/ can be determined by an ex-
haustive computation of g(f(z)) for all 2" elements z, resulting in a precompu-
tation time complexity of O(2™) and a memory complexity (measured with the
number of required memory cells) of O(2™). Given both distributions and a des-
ignated overall error probability, the data complexity of an optimal distinguisher
is estimated with help of the squared Euclidean imbalance (see Appendix A). We
assume that the test is performed in real-time, hence we do not need additional
memory in order to store the data. The online time complexity is identical to
the data complexity.

However, a precomputation of Pry: might be infeasible for large values of
n (e.g. n = 64 bit). We perform some detailed analysis of Pry- for small word
sizes n and establish an analytical hypothesis for the approximated distribution
of Y, considering only the most biased elements. This significantly reduces the
offline time and memory complexity, but might increase the online time and
data complexity of the distinguisher, given some 7. For small word sizes n, the
hypothesis can be verified with the accurate distributions, and for large n, the

% The term small is used with respect to current computational possibilities, i.e. n < 40
bit for personal computers nowadays.



quality of the hypothesis will be directly examined by the experimental data
complexity of the distinguisher.

2.1 Distribution of the Pure Square Mapping

Let us define the pure square mapping f(x) = 22 mod 2" and g(x) = msb,, ()
with m = n/2, which we will refer as PSM. Apart from the least significant bit, f
is a T-function. Iteration produces some fixed points such as 0 or 1, hence f can
not be considered as an update function for a real application. However, we will
be able to reduce more complex single-cycle mappings to some modified square
mappings and apply the results obtained in this section; in other words, we will
consider the pure square mapping as an ideal case, resulting in distinguishers
with minimal data complexity compared to modified square mappings.

We first mention that Klimov and Shamir [7] found an analytical expression
for probabilities of single bits of the square mapping. Applying the notation
X' = f(X) for an uniformly distributed X, they found that Pr([X']o = 0) = 3,
Pr([X']y =0) =1 and Pr([X']; = 0) = 3(1+272) for i > 1. However, as we will
have to deal with an additional carry bit later on (which would reduce this bias
significantly), we are more interested in the distribution of words.

We explain how to derive highly biased probability distributions for X’ =
f(X) and Y/ = g(f(X)). As shown in the next proposition, f is not a permuta-
tion, resulting in an unbalanced distribution of X’ (there are some predictable
elements f(x) with exceptionally large bias).

Proposition 1. Consider the function f : {0,1}™ — {0,1}" with f(z) = 2? mod
2™, For successive elements x € {0,...,2" — 1}, the images f(z) have a cyclic
structure with cycle length 272, Hence f is neither injective nor surjective.

Proof. As 2? — (27! —|—x)2 = 0 mod 2", we have two cycles of length 271,

and as (2772 + :1:)2 - (22— :1:)2 =0 mod 2", both cycles have two mirrored
sequences of length 272, Hence the output of successive numbers x has the
shape abc. . .cbaabc. . . chba. a

Due to the specified output function in PSM, the bias is transferred to the
distribution of Y. For a truly random scheme, any element of the output occurs
with probability 9 = 27"/2. For the particular scheme PSM, we observed (for
small word sizes n) that there exist 4 outcomes with biased probability 2 - g,
12 outcomes with biased probability 1.5 - my and so on. This property appears
to be independent of n, and we therefore can establish a hypothesis for the
most biased elements (which are explicitly known). Let ); be the aggregate
containing elements of constant biased probability ;. The parameter s; denotes
the cardinality of V;, and n; denotes the minimal word size for a stable occurrence
of m;. The parameters n;, s; and 7; are summarized in Tab. 1. Then we have for
i=0,...,k (limited by the condition n > ny)

Vo = {2(nmo)/2. 52, ji=0,...,5}
Vi = {202 (14 85);5=0,...,5:) (1)



The values in Tab. 1 are determined with empirical methods, however n;
and s; are exact at least for word sizes within our computational possibilities.
In the case of PSM, 7r; is exact for ¢ = 0, 1, but fluctuating for ¢ > 1 so we have
to take an average value. A further approximation is done with the remaining
elements in V.., which are assigned to a constant (standardised) probability. The
number of aggregates k determines the accuracy of the approximation. However,
k is constrained by the condition n < ng, and as the values of m; are only
accurate for n; ~ 40, we usually choose k£ = 8 for n > 40 bit. This corresponds
to a memory complexity of 2!7. Regarding the complexities of a distinguisher,
increasing the number of aggregates k is coupled with more time, more memory
and less data.

Table 1. Parameters of the approximated distribution for the first 9 aggregates

i 0 1 2 3 4 5 6 7 3
™2™ [2.000 1.500 1.200 1.100 1.050 1.030 1.002 1.005 1.003
n272 2 3 4 5 6 7 8 9 10
log,(s:)| 2 3 5 7 9 11 13 15 17

2.2 Attacking the Single-Word Mapping TF-0

Let us now consider the running single-word proposal TF-0 with the update
function f(z) = 2 + (2% V C) mod 2" where C' = 5,7 (mod 8), and with the
output function g(z) = msb,,(x) where 1 < m < n/2 as described in [7,10]. As
the low-order bits are known to be weak, the authors of the scheme proposed
m = 1,8,16,32 for the standard word size n = 64 bit. Klimov and Shamir
showed that f is an invertible T-function over an n-bit state z with a single
cycle of length 2™. The number of extracted bits m controls a tradeoff between
security and efficiency of the scheme. We give some relationship to PSM with
the next proposition.

27’7.7771

Proposition 2. Consider the scheme TF-0. If one requires C' < , 4t 1S
g(f(x))—g(z) = g(z®)+a mod 2™ forn —m > 2 and for a carry bit o € {0,1}.

Proof. Asf(z) =y =x+(2?VC) mod 2", we conclude y —z = 2>V C (mod 27)
for C < 2"~™. Hence, g(y — z) = g(2?> vV C) (mod 2™) and g(y — z) = g(z?)
(mod 2™) for C' < 2"~™. We finally have g(y) — g(z) — @ = g(2?) (mod 2™) for
C < 2" ™ and for some carry bit a € {0, 1}. 0

Proposition 2 states that the difference of two consecutive outputs of TF-0 differs
only by an additive carry bit a € {0,1} from the output of PSM. Therefore, we
may accurately approximate the distribution of the random variable g(f(X)) —
g(X) by the distribution of the random variable Y’ of PSM (i.e., we neglect the
influence of the carry bit).



We choose standard parameters C' = 5 and m = n/2. In order to perform
a test for large values of n, we approximate the distribution Pry: with the
hypothesis described in Sect. 2.1, using an optimal number of aggregates. The
data complexities are estimated according to (9) and verified with experiments.
We got an experimental data complexity of 232 for n = 64 bit, which turns out
to be very close to the estimated value, and somewhat larger than the lower
limit derived by extrapolation for the accurate probability distribution.

If the scheme is used as a pseudo-random number generator in large computer
simulations, the output may not be considered as random after 232 iterations,
although we have a single-cycle of 264 states. This observation is consistent
with the practice nowadays, not to use more data than /P of a pseudo-random
number generator (PRNG) with period P. However, we also examined modified
output functions with a smaller number of extracted bits m. Experiments show
that (independently of the word size n), decreasing m by one bit increases the
data complexity by a factor of 2. We conclude that, in contradiction to previ-
ous assumptions, not only the lower bits of this T-function are weak, but also
the higher bits. This is an intrinsic property of the scheme, which will have
consequences for other square mappings and may have consequences for more
complicated output functions.

We mention that state-recovery attacks on TF-0 have been described in [2,
8]. Moreover, Mitra and Sarkar [13] described a time-memory tradeoff for the
squaring problem, which may be applied to consecutive output differences of
TF-0. The most efficient algorithms have a complexity of about 2'6.

2.3 Attacking the Multi-Word Mapping TF-0m

Several multi-word update functions proposed in [9] have been attacked with a
time-memory tradeoff by Mitra and Sarkar [13]. We now present a distinguishing
attack against a multi-word proposal which has not been broken yet, and which
we will refer as TF-Om. The update function f corresponds to (12) in [9], it is an
invertible T-function over a 4n-bit state © = (xg, x1, 22, x3) with a single cycle
of length 24"

To xo + (S% \Y Co)
X1 X + (S% V Ol) + Ko

f 2
o ~ IQ—F(S%\/OQ)—FKl ( )
X3 xr3 + (S% V Cg) + Ko

It is s = xg, 81 = s D T1, S2 = S1 + T2, S3 = S2 D x3. The constants are
satisfying [Ci]o = 1 for i € {0,1,2,3}, and [Cs]2 = 1. All operations are carried
out on n bit words and k; denotes the carry bit of x;. The output function is
g(x) = msb,, (x3) with m = n/2. We choose the standard word size n = 64 bit.

The multi-word update function (2) consists of 4 approximatively indepen-
dent and identically distributed (iid) random variables similar to the single-word
update function of TF-0. We may concentrate only on the most significant vari-
able x3. The argument to be squared s3 can be approximated as uniformly



distributed, and therefore produces the same output as 2. The carry bit mod-
ifies the output with a probability of 2732; this infrequent event will not have
a significant influence to the distinguisher. Therefore, we do not have to mod-
ify the approximate distribution used for the distinguisher. Theoretical data
complexity remains the same, and simulations result in an experimental data
complexity of 232 for a 256 bit state with 224 unknown bits. We have performed
20 experiments, observing no incorrect decision of our distinguisher. The data
complexity is very close to the complexity for TF-0, confirming our assumption
on the influence of x and s.

We emphasize the practical applicability of this result and the small number
of required data, compared to the large number of unknown bits. As before, we
also considered to extract less bits m < n/2. Again, we found that decreasing m
by one bit increases the data complexity by a factor of 2. Hence reduction of m
may still not prevent practical attacks.

3 Cryptanalysis of TSC

We start this section with a description of the recent proposal of stream cipher
family TSC [4]. We find a very efficient distinguishing attack on TSC-1, as well
as a distinguishing attack on TSC-2.

3.1 Description of the Schemes

The hardware-oriented stream cipher family TSC consists of a state vector of
128 bits © = (x,x1, 2, x3), an update T-function f and an output function g.
The update function consists of an odd 32-bit parameter «(z) and a single-cycle
S-box S, mapping a 4 bit input to a 4 bit output. If [a]; = 0, then the mapping
S¢€ is applied on bit-slice ¢ of the state, otherwise the mapping S° is applied. e
(resp. o) is an even (resp. odd) number. This procedure is repeated for all 32
bit-slices in a single update period. With the satisfaction of these properties, f
is a single-cycle T-function, hence the period of the cipher is 2128,

The odd parameter is defined by o = (p + C) @ p & 2s with a constant C,
p=x9Ax1AT2AT3 and s = xg+x1 + T2 +x3. Except for the lower few bits, each
output bit of « is equal to 1 almost half of the time. Due to the properties of an
odd parameter, one has [a]p = 1, meaning that the least significant bit-slice is
always mapped by S°. Consequently, the bits from the least significant bit-slice
of the state will be referred as irregular bits.

Let us define the specified proposals. In TSC-1, the powers of the S-box are
e = 2 and o = 1, the constant used in the odd parameter is C' = 0x12488421,
and the S-box (in standard notation) and the output function are defined by

S  =1(3,5,9,13,1,6,11,15,4,0,8,14,10,7,2,12)
g(7) = (Toco + 71) <15 + (Toac7 + T3) -

(3)

In TSC-2, one has e = 0 (hence, the identical mapping is used), o = 1 and
C = 0x00000001. The S-box and the output function are defined by



S =(5,2,11,12,13,4,3,14,15,8,1,6,7,10,9,0) (4)

g(z) = (Tox11 + 21)«14 + (To13 + ¥2) 22 + (To12 + 23)
The output functions have a period of 2128, however, three state variables in the
output equation determine the remaining variable, hence the maximum security
of the ciphers is 96 bit. Furthermore, there are some time-memory tradeoffs on
TSC with large precomputation time complexities.

3.2 Attacking the Stream Cipher TSC-1

In this section, we present a linearisation attack on TSC-1. Probabilistic linear
relations in the update function (i.e. relations between state bits at different time
instants) and in the output function (i.e. relations between state bits and output
bits) are combined, in order to obtain relations between output bits at different
time instants. Provided that the relations are biased, the output of TSC-1 can
be distinguished from a random stream.

Let us first discuss a linear approximation of the T-function. We focus on a
single bit [2%]; and analyse the statistical effect of A iterations to this bit. Let
Y4 be the indicator variable of the event [z]; = [:E;JFA]i, implying that a fixed
bit is repeated after A iterations. After A iterations, bit-slice ¢ (including the
bit under observation) is mapped ¢ times by S, with A < § < 2A (the mapping
S is applied 2A — § times, and the mapping S? is applied § — A times). Hence,
in order to compute Pr(Ya = 1), we have to analyse the distribution of § and
the bit-flip probabilities of the mappings S°.

Let us denote ba(d) the probability that after A iterations, the S-box is
applied 0 times. For regular bit-slices, we reasonably assume equal probabilities
for the application of S and S? (which is, however, a simplification for some lower
bit-slices), and binomial distribution for b,

ba(6) = <5_AA) ~ (%)A . (5)

For the irregular bit-slice, it is ba(d) = 1 for § = A, and zero otherwise.
In order to describe the effect of the mappings S°, let us analyse the S-box.
We will denote w an uniform random number 0 < w < 15, and i an index
0 < i < 31. Let also X; be the indicator variable of the event [w]; = [S°(w)]; for
any fixed bit position ¢. The S-box is designed such that the bit-flip probability
for an application of S and S? is balanced. However, there is a huge bias of the
bit-flip probability for some multiple applications of S, namely for Pr(Xs; = 1)
with 6 = 0 mod 4 (this observation is of course portable to the mapping S?).
We find Pr(X, = 1) = Pr(X12 = 1) = 1/8, Pr(Xg = 1) = 3/4 and of course
Pr(X16 = 1) = 1. These results are independent of bit-position i, other values of
0 result in balanced probabilities.



Finally, the bit-flip probability P(YA) of a single bit in the state for A iter-
ations simply becomes the weighted sum

2A
Pr(Ya=1)= Y Pr(Xs;=1)-ba(d) . (6)
0=A

We find a maximal bias for A = 3 with Pr(Yz = 1) = 0.3594, and still a
large bias for many other values of A. The predicted probabilities are in good
agreements with experiments. In the case of irregular bits, (6) simply becomes
Pr(Ya =1) =Pr(Xa = 1) with a large bias for A =0 mod 4.

In the fictive case of a perfect single-cycle S-box (which, however, does not
exist) with Pr(Xs; = 1) = 1/2 for 6 # 16 and Pr(Xi6 = 1) = 1, (6) becomes
Pr(Ya = 1) = (ba(16) 4+ 1)/2 for regular bits. A maximal bias is obtained for
A =11, resulting in Pr(Y1; = 1) = 0.6128.

Let us combine the relation (6) with a simple linear approximation of the
output function. The bias of Y4 strikes through the output function, such that
the loops in the state are also present in the output. We consider a single bit [y'];
of the output and analyse the statistical effect of A iterations to this bit. Let Zx
be the indicator variable of the event [y?]; = [y*T4];, implying that a fixed bit of
the output is repeated after A iterations. We approximate the output function
by [yli = [®0)i+s8 ® [x1]it17 @ [T2]it2s @ [w3]; ® ¢, for i = 0,...,31 (additions of
indices are performed modulo 32) and a carry bit ¢ € {0,1}. For bit-positions
i = 0,7,15,24, one irregular bit is involved in the linear approximation of [y];;
consequently, these output bits are called irregular. Neglecting the carry bit and
availing the fact that the output bits are composed of independent state bits, the
probability Pr(Za = 1) is approximated using Matui’s Piling-up Lemma [12].
For regular output bits, we obtain

4
Pr(Za=1)= % +23. (Pr(YA =1)— %) : (7)

Notice that e = Pr(Ya = 1) —% is the probability bias. In the case of irregular
output bits, one of the four factors € in (7) is substituted by ¢ = Pr(Xa =
1) — 1. Let us consider the case of A = 3; it is Pr(Z3 = 1) = 0.5031 for regular
output bits (and a balanced probability for irregular output bits). However, as we
neglected the carry bit in this simple model, the above probability is considered
as an upper limit. Notice that the carry is also biased and inclines towards
absorbing itself. Experiments show that indeed, most of the regular output bits
are biased for A = 3. We emphasise that higher bits are affected equivalently
to lower bits. Due to the integer addition, the exact bias depends on the bit-
position. We find the maximum bias for bit-position ¢ = 1 with p’ = 0.5003. A
similar result is obtained for A = 8 and i = 0.

This biased probability is accessible to a cryptanalyst with known plaintext
and may be used to distinguish the outcome of the cipher from a uniform random
outcome. With the uniform probability p = 1/2 and the biased probability p’ =
p(1+¢q), the required data complexity becomes O(1/pg?), see Theorem 2 in [11].



Consequently, for p’ = 0.5003 we expect a data and online time complexity
of about 222 (16 MB of keystream); offline time complexity is negligible. We
performed a number of experiments (taking all biased bits into account) and
verified the predicted complexity, given a small probability of error.

As described above, a variant of this attack even works without taking into
account any specific property of the single-cycle S-box. Finally, we mention that
the bias of Za can be transformed in a state-recovery attack by guess-and-
determine. In a first step, we guess the least-significant bit-slice [xt]g, which may
be iterated separately. The four corresponding bits are subtracted independently
from appropriate output bits in order to construct a modified index variable.
Considering (7), we expect the bias to significantly increase for a right guess,
and we expect a balanced output for a false guess. After recovering [z!]o, we
may continue with consecutive bit-slices. Considering all available equations,
experiments showed that a single bit-slice may be accepted or rejected (with
a reasonable probability of error) using 222 iterations. Repeating this for all 24
values of a single bit-slice, and for all 2° bit-slices, we obtain an overall complexity
of about 23, A similar result has also been obtained by Peyrin and Muller [14].

3.3 Attacking the Stream Cipher TSC-2

In both versions of TSC, the 32 bits of « determine the update of the 128 bits
of the state. Hence we may wait for appropriate values of « in order to initiate
some attacks. In TSC-2, an interesting case is the minimal-weight parameter
a = 1, for which only the least significant bit-slice is modified and two similar
successive outputs may be detected. The detector is an algorithm which takes
as input the keystream z and gives out 1 if &« = 1, and 0 otherwise. The detector
can make two types of errors: it can either output 1 when « # 1 (false positives)
or 0 when o = 1 (false negatives). The error probabilities are denoted by A and
B, respectively.

The complete set of states U resulting in a(z') = 1 is given with the con-
ditions 32 ¢ € {0x00000000, 0x80000000} and [z']y € {0x0, 0x3, 05, 0x6,
0x9, 0xA, 0xC}. In the following, let us assume that such a state occurs at time
t = 0. Hence we have o' = 1, and only the least significant bit-slice of the
state is changed by the mapping f : 2 — z!; consequently, we suppose that
the subsequent outputs y° and y' have low distance. Let us analyse the exem-
plary integer modular difference y° — y! for # € U with [2°]g = 0x5; we find
that [2!]o = 0x4 and [2°]; = [2!]; for i # 0. The output function produces
’yo = ’yl + 1<<<25 + 1<<<3 + 1<<<12 and hence ’yo — ’yl = 0x02001008. In fact, we find
that y° — y! = const for any = € U, where the constant const depends only on
the least-significant bit-slice [2°]y in most of the cases, see Tab. 2. For less than
1% of the states in I/, the integer modular difference is not constant because an
addition in the output function may cause a carry bit, which propagates from
the msb to the Isb due to the cyclic shift.



Table 2. List of output differences for a = 1, some of which will be applied in the
attack

[2To][z"To] ¥" -y’

0x0 | 0x5 |OxFDBFEFF8
0x3 | 0xC |0x01C05007
0x5 | 0x4 |0x02001008
0x6 | 0x3 |OxFE3FEFF8
0x9 | 0x8 |0x02001008
0xA | Ox1 |0OxFEOO2FF9
0xC | 0x7 |OxFDFFAFF9

Detection of single constants only would result in a huge amount of false
alarms. However, examining Tab. 2, we find a path? for the iteration of [2°]y
with 0x6 — 0x3 — 0xC which is closed in U, meaning that o’ = o = a? = 1.
Therefore, we may restrict the detector to detect only a subset of states V C U,
where V is defined by the conditions E?:o zt € {0x00000000, 0x80000000} and
[zt]o € {0x6,0x3}. The detector takes three successive outputs, computes two
differences of consecutive outputs and compares them with the fixed values; if
there is a match of both, the detector returns 1, and 0 otherwise. The probability
of x € Vis 2733 and a false detection due to random outputs® occurs with
probability 27%4. As the differences are constant almost all the time, the error
B (which would increase the running time of the detector) is negligible, too.
The time and data complexity is around 233 (no precomputation and negligible
memory).

The detector may be transformed in a distinguisher by feeding the detector
with a fixed amount of data n. If the detector always returns 0, then the dis-
tinguisher returns 0 (random stream); if the detector returns 1 at least once,
then the distinguisher returns 1 (keystream produced by TSC-2). The probabil-
ity of false positives may be neglected, and the probability of false negatives is
B = (1-273)" For B = 0.05, we obtain a data complexity of about n = 234.

With a successful detection of a(x?) = 1, we obtain the information Z?:o zt e
{0x00000000, 0x80000000}, as well as the value of bit-slice [z]o and the out-
put equation g(zt) = yt. This information may be used for a state-recovery
attack with a complexity smaller than 2°¢. However, TSC-2 appears to be seri-
ously injured with our efficient distinguishing attack, and we did not study the
state-recovery attack in more detail.

* Because of the triangular structure, the least significant bit-slice may be iterated
separately.

5 In order to increase the set V, we do not make use of the connection of the whole
path.



4 Conclusions

In this paper, we examined some specific proposals of stream ciphers based on
T-functions. Two proposals by Klimov and Shamir are based on the squaring
operation, namely a single word T-function as well as a previously unbroken
multi-word T-function with a 256-bit state, both revealing some part of the state.
It turned out that the integer differences of consecutive outputs have significant
statistical deviation even in the high-order bits. Based on that deviation, we
described efficient distinguishing attacks with a 232 data complexity. We conclude
that the squaring operation has some undesirable properties when used in the
design of T-functions and possibly in other cryptographic primitives. The two
proposals by Hong et al. have a 128-bit state, which are controlled by a 32-bit
parameter and tiny S-boxes. The output function uses some integer additions
and rotations. For one of the proposals, we found small loops in the state and
in the output produced by the S-box, resulting in a distinguishing attack of
complexity 222. For the other proposal, we wait for an appropriate value of
the parameter, which produces some detectable structure in the output. This
results in a distinguisher of complexity 23*. We conclude that the small size of
the parameter (and potentially also the tiny S-boxes) may be critical, and that
the integer additions and rotations in the output functions have a very limited
randomizing effect.
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Optimal Distinguishers

In a recent paper, Baignéres et al. [1] have analysed optimal algorithms (in
terms of number of samples) aiming at distinguishing two random sources whose
probability distributions are completely known to a cryptanalyst. We briefly
recall the framework of Baignéres et al.

Let Dy and Dy be two probability distributions sharing the same support X.

We consider the problem of distinguishing these two distributions using v iid



samples. A (possibly computationally unbounded) algorithm §” which takes as
input a sequence of v realizations z" distributed according to D where either
D = Dy or D = Dy, and outputs 0 or 1 according to its decision, is called a
distinguisher. It can be fully determined by an acceptance region A C X such
that §”(2") = 1iff 2¥ € A. The ability to distinguish a distribution from another
is usually measured in terms of the advantage of the distinguisher and is defined
by

Advs. = | Pr[6”(Z7) = 0] — Pr[6¥(Z") = 0]| .
Dy DY

Hence, the distinguisher can make two types of errors: it can either output 0 when
D = D; or 1 when D = Dy; we will denote these respective error probabilities by «
and 3, respectively, and the overall error probability is defined as 7, = %(a +0).

In [5] it is shown that it is easy to define explicitly an optimal distinguisher
in this precise statistical setting. Indeed, given a fixed overall probability of
error, it is sufficient for an optimal distinguisher to count the number v,(z")
of occurrences of all possible symbols x € X in the sample 2", to compute the
log-likelihood ratio

llr(z¥) = Z v;(z")log iisj E (8)

rzeX

and to output 0 as decision iff lIr(z”) > 0. If we assume that the distributions
Do and D; are close to each other, i.e. Prp,[z] = 7, and Prp,[z] = 7, + &2
with |e,| < 7, for all z € X, then the following result gives a very accurate
estimation of the necessary number of samples.

Theorem 1 (Baignéres et al. [1]). Let Xi,...,X, be iid random variables
defined over X with probability distribution D, let Do and D1 be two distributions
sharing the same support which are close to each other, where 7, = Prp,[z] and
Ty + €2 = Prp, [2]. Let d be a real number defined by

dzyzi.

T,
zex 7

Then, the overall probability of error of an optimal distinguisher between Dy and
D1 is approximately
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Baignéres et al., based on this result, introduced then what seems to be a natural
“measure”, named squared Euclidean imbalance and denoted A(Dg, D), between
a distribution Dy and a close distribution D; defined by

A(Dg,Dy) =Y & : (9)

Tg
reX
since A(Dg, D7) is directly linked to the number of sample needed to distinguish
both probability distributions with a good success probability.



