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omAbstra
t. Klimov and Shamir proposed a new 
lass of simple 
rypto-graphi
 primitives named T-fun
tions. For two 
on
rete proposals basedon the squaring operation, a single word T-fun
tion and a previouslyunbroken multi-word T-fun
tion with a 256-bit state, we des
ribe an ef-�
ient distinguishing atta
k having a 232 data 
omplexity. Furthermore,Hong et al. re
ently proposed two fully spe
i�ed stream 
iphers, 
onsist-ing of multi-word T-fun
tions with 128-bit states and �ltering fun
tions.We des
ribe distinguishing atta
ks having a 222 and a 234 data 
omplex-ity, respe
tively. The atta
ks have been implemented.Key words Stream 
ipher, T-fun
tion, square mapping, distinguish-ing atta
k, statisti
al 
ryptanalysis1 Introdu
tionBinary additive stream 
iphers en
rypt a plaintext stream by 
ombining it witha key stream by means of an XOR operation (the de
ryption simply being theXOR of the key stream with the 
iphertext stream). The key stream 
onsistsof a pseudo-random bit sequen
e usually generated by iteration of an updatefun
tion, the latter being initialized with a se
ret state. One expe
ts that thesequen
e generated by a 
ryptographi
ally se
ure stream 
ipher is statisti
allyindistinguishable from a truly random sequen
e (and this for any adversary withsome limited 
omputational power), and that there exists no key-re
overy atta
kbetter than brute-for
e.Re
ently, Klimov and Shamir [6�10℄ proposed a new framework for highlye�
ient mappings whi
h 
ould be used as primitives in stream 
iphers andother 
ryptographi
 s
hemes. These primitives 
onsist of triangular fun
tions(T-fun
tions) whi
h are built with help of fast arithmeti
 and Boolean oper-ations widely available on high-end mi
ropro
essors or on dedi
ated hardware
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e on Cryptology in Malaysia, Kuala Lumpur,Malaysia, September 28-30, 2005. Pro
eedings, volume 3715 of Le
ture Notes in Com-puter S
ien
e, pages 2�15. Springer-Verlag, 2005.



implementations; these mappings 
ome with provable properties su
h as invert-ibility and a single-
y
le stru
ture. As an example, the mapping TF-0 is proposedin [7℄, whi
h is de�ned by x 7→ x+(x2∨C) mod 2n for an n-bit state x and with
C ≡ 5, 7 (mod 8). As the maximal length of a 
y
le may be too short for typi
alvalues of n (e.g. n = 64), and as state-re
overy atta
ks have been des
ribed [2,8℄,
TF-0 is not meant to be dire
tly used for 
ryptographi
 purposes. Considering
ryptographi
 appli
ations, several e�
ient multi-word T-fun
tions are proposedin [9℄. Some of these proposals have been broken by Mitra and Sarkar [13℄ usingtime-memory tradeo�s. Based on the results of Klimov and Shamir, a new 
lassof multi-word T-fun
tions and two fully spe
i�ed stream 
iphers have been pro-posed by Hong et al. [3, 4℄. Their s
hemes TSC-1 and TSC-2 have a transparentdesign and allow for some �exibility.1.1 Contributions of this PaperIn this paper, we analyse several proposals of T-fun
tions and exhibit substantialweaknesses in some of these 
onstru
tions. The �aws are extended to dedi
atedatta
ks.First we analyse the statisti
al properties of the pure square mapping, whi
hallows us to �nd an e�
ient distinguisher (with an expe
ted 232 data 
omplexity)on TF-0 as well as on a previously unbroken multi-word mapping des
ribed in [9℄and labeled here as TF-0m, both based on the squaring operation. TF-0m oper-ates on a 256-bit state and the output sequen
e 
onsists of the 32 most signi�
antbits.Then, we 
ryptanalyse the TSC-family of stream 
iphers [4℄, whi
h operateson a 128-bit state and outputs 32 bits of the state using a �ltering fun
tion. We�nd a very e�
ient distinguisher for TSC-1 with an expe
ted 222 data 
omplexity;for TSC-2, we des
ribe a di�erent distinguishing atta
k with an expe
ted 234 data
omplexity.To 
on�rm our theoreti
al results, the distinguishing atta
ks have been im-plemented and run many times with su

ess. Our distinguishers have a negligibleerror probability and a remarkably small time 
omplexity.1.2 Notational ConventionsWe analyse 
ryptographi
 s
hemes 
onsisting of an internal state x ∈ X , anupdate fun
tion f : X → X and an output fun
tion g : X → Y. In the 
ase wheretime instants are relevant, we will denote xt the state at time t (distin
tion ofpowers will be 
lear from the 
ontext). Hen
e, the iterative s
heme maps the state
xt to xt+1 = f(xt) and outputs yt = g(xt). The seed of the iteration is obtainedfrom the se
ret key with help of a key s
heduling pro
ess. The keystream K
onsists in the 
on
atenation of su

essive outputs, namely K = y0||y1|| · · · .We assume throughout this paper the threat model of a known-plaintextatta
k, i.e., we assume to know some part of the keystream K. Our purposeis then to distinguish K from a uniformly distributed random sequen
e, or tore
over the state at any time.



In the 
ase where the state is a ve
tor formed by some words, we will denotea single word by xj and the state as x = (x0, x1, . . .). Adopting the 
ommonnotation, [x]i is the (i + 1)-st least signi�
ant bit-sli
e of the state, [x]0 denotingthe rightmost bit-sli
e. Consequently, [xj ]i is the (i + 1)-st least signi�
ant bitof word j. The operation msbm(x) states for the m most signi�
ant bits of x.Arithmeti
 operations are performed modulo 2n with typi
al word size n = 32or 64 bit. Boolean operations are performed on all n bits in parallel and aredenoted by ∧ (AND), ∨ (OR), and by ⊕ (XOR). Finally, ≪ k denotes a 
y
li
 leftshift by k positions.2 Cryptanalysis of Square MappingsKlimov and Shamir have proposed di�erent types of T-fun
tions based on thesquaring operation [7, 9℄. After introdu
ing the framework of this se
tion, wefo
us on the pure square mapping and derive a hypothesis about their proba-bility distribution. This distribution is used in order to distinguish the proposedmappings TF-0 and TF-0m with signi�
ant advantage.Let us 
onsider a s
heme whi
h 
onsists of an update fun
tion f and anoutput fun
tion g with the notation of Se
t. 1.2. Let us further de�ne the randomvariables X and X ′ over the set X = {0, 1}n, with uniformly distributed X andwith X ′ = f(X). Equivalently, Y and Y ′ are random variables over Y = {0, 1}mwith uniformly distributed Y and with Y ′ = g(f(X)). Given PrY , PrY ′ andsome uniform random or pseudo-random output respe
tively, we 
an perform astatisti
al test (e.g. a Neyman-Pearson test, see Appendix A for more details)in order to assign the output to a distribution. We are interested in the overall
omplexity of the distinguisher 
orresponding to some designated overall errorprobability πe.For small3 word sizes n, the distribution PrY ′ 
an be determined by an ex-haustive 
omputation of g(f(x)) for all 2n elements x, resulting in a pre
ompu-tation time 
omplexity of O(2n) and a memory 
omplexity (measured with thenumber of required memory 
ells) of O(2m). Given both distributions and a des-ignated overall error probability, the data 
omplexity of an optimal distinguisheris estimated with help of the squared Eu
lidean imbalan
e (see Appendix A). Weassume that the test is performed in real-time, hen
e we do not need additionalmemory in order to store the data. The online time 
omplexity is identi
al tothe data 
omplexity.However, a pre
omputation of PrY ′ might be infeasible for large values of
n (e.g. n = 64 bit). We perform some detailed analysis of PrY ′ for small wordsizes n and establish an analyti
al hypothesis for the approximated distributionof Y ′, 
onsidering only the most biased elements. This signi�
antly redu
es theo�ine time and memory 
omplexity, but might in
rease the online time anddata 
omplexity of the distinguisher, given some πe. For small word sizes n, thehypothesis 
an be veri�ed with the a

urate distributions, and for large n, the3 The term small is used with respe
t to 
urrent 
omputational possibilities, i.e. n . 40bit for personal 
omputers nowadays.



quality of the hypothesis will be dire
tly examined by the experimental data
omplexity of the distinguisher.2.1 Distribution of the Pure Square MappingLet us de�ne the pure square mapping f(x) = x2 mod 2n and g(x) = msbm(x)with m = n/2, whi
h we will refer as PSM. Apart from the least signi�
ant bit, fis a T-fun
tion. Iteration produ
es some �xed points su
h as 0 or 1, hen
e f 
annot be 
onsidered as an update fun
tion for a real appli
ation. However, we willbe able to redu
e more 
omplex single-
y
le mappings to some modi�ed squaremappings and apply the results obtained in this se
tion; in other words, we will
onsider the pure square mapping as an ideal 
ase, resulting in distinguisherswith minimal data 
omplexity 
ompared to modi�ed square mappings.We �rst mention that Klimov and Shamir [7℄ found an analyti
al expressionfor probabilities of single bits of the square mapping. Applying the notation
X ′ = f(X) for an uniformly distributed X , they found that Pr([X ′]0 = 0) = 1

2 ,
Pr([X ′]1 = 0) = 1 and Pr([X ′]i = 0) = 1

2 (1+2−
i

2 ) for i > 1. However, as we willhave to deal with an additional 
arry bit later on (whi
h would redu
e this biassigni�
antly), we are more interested in the distribution of words.We explain how to derive highly biased probability distributions for X ′ =
f(X) and Y ′ = g(f(X)). As shown in the next proposition, f is not a permuta-tion, resulting in an unbalan
ed distribution of X ′ (there are some predi
tableelements f(x) with ex
eptionally large bias).Proposition 1. Consider the fun
tion f : {0, 1}n → {0, 1}n with f(x) = x2 mod
2n. For su

essive elements x ∈ {0, . . . , 2n − 1}, the images f(x) have a 
y
li
stru
ture with 
y
le length 2n−2. Hen
e f is neither inje
tive nor surje
tive.Proof. As x2 −

(

2n−1 + x
)2

= 0 mod 2n, we have two 
y
les of length 2n−1,and as (

2n−2 + x
)2 −

(

2n−2 − x
)2

= 0 mod 2n, both 
y
les have two mirroredsequen
es of length 2n−2. Hen
e the output of su

essive numbers x has theshape abc . . . cbaabc . . . cba. ⊓⊔Due to the spe
i�ed output fun
tion in PSM, the bias is transferred to thedistribution of Y ′. For a truly random s
heme, any element of the output o

urswith probability π0 = 2−n/2. For the parti
ular s
heme PSM, we observed (forsmall word sizes n) that there exist 4 out
omes with biased probability 2 · π0,
12 out
omes with biased probability 1.5 · π0 and so on. This property appearsto be independent of n, and we therefore 
an establish a hypothesis for themost biased elements (whi
h are expli
itly known). Let Yi be the aggregate
ontaining elements of 
onstant biased probability πi. The parameter si denotesthe 
ardinality of Yi, and ni denotes the minimal word size for a stable o

urren
eof πi. The parameters ni, si and πi are summarized in Tab. 1. Then we have for
i = 0, . . . , k (limited by the 
ondition n ≥ nk)

Y0 = {2(n−n0)/2 · j2; j = 0, . . . , s0}
Yi = {2(n−ni)/2 · (1 + 8j); j = 0, . . . , si}
Y∞ = Y − ∑Yi .

(1)



The values in Tab. 1 are determined with empiri
al methods, however niand si are exa
t at least for word sizes within our 
omputational possibilities.In the 
ase of PSM, πi is exa
t for i = 0, 1, but �u
tuating for i > 1 so we haveto take an average value. A further approximation is done with the remainingelements in Y∞, whi
h are assigned to a 
onstant (standardised) probability. Thenumber of aggregates k determines the a

ura
y of the approximation. However,
k is 
onstrained by the 
ondition n < nk, and as the values of πi are onlya

urate for ni ≈ 40, we usually 
hoose k = 8 for n > 40 bit. This 
orrespondsto a memory 
omplexity of 217. Regarding the 
omplexities of a distinguisher,in
reasing the number of aggregates k is 
oupled with more time, more memoryand less data.Table 1. Parameters of the approximated distribution for the �rst 9 aggregates

i 0 1 2 3 4 5 6 7 8

πi2
m 2.000 1.500 1.200 1.100 1.050 1.030 1.002 1.005 1.003

ni2
−2 2 3 4 5 6 7 8 9 10

log
2
(si) 2 3 5 7 9 11 13 15 17

2.2 Atta
king the Single-Word Mapping TF-0Let us now 
onsider the running single-word proposal TF-0 with the updatefun
tion f(x) = x + (x2 ∨ C) mod 2n where C ≡ 5, 7 (mod 8), and with theoutput fun
tion g(x) = msbm(x) where 1 ≤ m ≤ n/2 as des
ribed in [7, 10℄. Asthe low-order bits are known to be weak, the authors of the s
heme proposed
m = 1, 8, 16, 32 for the standard word size n = 64 bit. Klimov and Shamirshowed that f is an invertible T-fun
tion over an n-bit state x with a single
y
le of length 2n. The number of extra
ted bits m 
ontrols a tradeo� betweense
urity and e�
ien
y of the s
heme. We give some relationship to PSM withthe next proposition.Proposition 2. Consider the s
heme TF-0. If one requires C < 2n−m, it is
g(f(x))−g(x) = g(x2)+α mod 2m for n − m > 2 and for a 
arry bit α ∈ {0, 1}.Proof. As f(x) = y = x+(x2∨C) mod 2n, we 
on
lude y−x ≡ x2∨C (mod 2n)for C < 2n−m. Hen
e, g(y − x) ≡ g(x2 ∨ C) (mod 2m) and g(y − x) ≡ g(x2)
(mod 2m) for C < 2n−m. We �nally have g(y)− g(x)−α ≡ g(x2) (mod 2m) for
C < 2n−m and for some 
arry bit α ∈ {0, 1}. ⊓⊔Proposition 2 states that the di�eren
e of two 
onse
utive outputs of TF-0 di�ersonly by an additive 
arry bit α ∈ {0, 1} from the output of PSM. Therefore, wemay a

urately approximate the distribution of the random variable g(f(X)) −
g(X) by the distribution of the random variable Y ′ of PSM (i.e., we negle
t thein�uen
e of the 
arry bit).



We 
hoose standard parameters C = 5 and m = n/2. In order to performa test for large values of n, we approximate the distribution PrY ′ with thehypothesis des
ribed in Se
t. 2.1, using an optimal number of aggregates. Thedata 
omplexities are estimated a

ording to (9) and veri�ed with experiments.We got an experimental data 
omplexity of 232 for n = 64 bit, whi
h turns outto be very 
lose to the estimated value, and somewhat larger than the lowerlimit derived by extrapolation for the a

urate probability distribution.If the s
heme is used as a pseudo-random number generator in large 
omputersimulations, the output may not be 
onsidered as random after 232 iterations,although we have a single-
y
le of 264 states. This observation is 
onsistentwith the pra
ti
e nowadays, not to use more data than √
P of a pseudo-randomnumber generator (PRNG) with period P . However, we also examined modi�edoutput fun
tions with a smaller number of extra
ted bits m. Experiments showthat (independently of the word size n), de
reasing m by one bit in
reases thedata 
omplexity by a fa
tor of 2. We 
on
lude that, in 
ontradi
tion to previ-ous assumptions, not only the lower bits of this T-fun
tion are weak, but alsothe higher bits. This is an intrinsi
 property of the s
heme, whi
h will have
onsequen
es for other square mappings and may have 
onsequen
es for more
ompli
ated output fun
tions.We mention that state-re
overy atta
ks on TF-0 have been des
ribed in [2,8℄. Moreover, Mitra and Sarkar [13℄ des
ribed a time-memory tradeo� for thesquaring problem, whi
h may be applied to 
onse
utive output di�eren
es of

TF-0. The most e�
ient algorithms have a 
omplexity of about 216.2.3 Atta
king the Multi-Word Mapping TF-0mSeveral multi-word update fun
tions proposed in [9℄ have been atta
ked with atime-memory tradeo� by Mitra and Sarkar [13℄. We now present a distinguishingatta
k against a multi-word proposal whi
h has not been broken yet, and whi
hwe will refer as TF-0m. The update fun
tion f 
orresponds to (12) in [9℄, it is aninvertible T-fun
tion over a 4n-bit state x = (x0, x1, x2, x3) with a single 
y
leof length 24n:
f :









x0

x1

x2

x3









7→









x0 + (s2
0 ∨ C0)

x1 + (s2
1 ∨ C1) + κ0

x2 + (s2
2 ∨ C2) + κ1

x3 + (s2
3 ∨ C3) + κ2









. (2)It is s0 = x0, s1 = s0 ⊕ x1, s2 = s1 + x2, s3 = s2 ⊕ x3. The 
onstants aresatisfying [Ci]0 = 1 for i ∈ {0, 1, 2, 3}, and [C3]2 = 1. All operations are 
arriedout on n bit words and κi denotes the 
arry bit of xi. The output fun
tion is
g(x) = msbm(x3) with m = n/2. We 
hoose the standard word size n = 64 bit.The multi-word update fun
tion (2) 
onsists of 4 approximatively indepen-dent and identi
ally distributed (iid) random variables similar to the single-wordupdate fun
tion of TF-0. We may 
on
entrate only on the most signi�
ant vari-able x3. The argument to be squared s3 
an be approximated as uniformly



distributed, and therefore produ
es the same output as x2. The 
arry bit mod-i�es the output with a probability of 2−33; this infrequent event will not havea signi�
ant in�uen
e to the distinguisher. Therefore, we do not have to mod-ify the approximate distribution used for the distinguisher. Theoreti
al data
omplexity remains the same, and simulations result in an experimental data
omplexity of 232 for a 256 bit state with 224 unknown bits. We have performed
20 experiments, observing no in
orre
t de
ision of our distinguisher. The data
omplexity is very 
lose to the 
omplexity for TF-0, 
on�rming our assumptionon the in�uen
e of κ and s.We emphasize the pra
ti
al appli
ability of this result and the small numberof required data, 
ompared to the large number of unknown bits. As before, wealso 
onsidered to extra
t less bits m < n/2. Again, we found that de
reasing mby one bit in
reases the data 
omplexity by a fa
tor of 2. Hen
e redu
tion of mmay still not prevent pra
ti
al atta
ks.3 Cryptanalysis of TSCWe start this se
tion with a des
ription of the re
ent proposal of stream 
ipherfamily TSC [4℄. We �nd a very e�
ient distinguishing atta
k on TSC-1, as wellas a distinguishing atta
k on TSC-2.3.1 Des
ription of the S
hemesThe hardware-oriented stream 
ipher family TSC 
onsists of a state ve
tor of
128 bits x = (x0, x1, x2, x3), an update T-fun
tion f and an output fun
tion g.The update fun
tion 
onsists of an odd 32-bit parameter α(x) and a single-
y
leS-box S, mapping a 4 bit input to a 4 bit output. If [α]i = 0, then the mapping
Se is applied on bit-sli
e i of the state, otherwise the mapping So is applied. e(resp. o) is an even (resp. odd) number. This pro
edure is repeated for all 32bit-sli
es in a single update period. With the satisfa
tion of these properties, fis a single-
y
le T-fun
tion, hen
e the period of the 
ipher is 2128.The odd parameter is de�ned by α = (p + C) ⊕ p ⊕ 2s with a 
onstant C,
p = x0∧x1∧x2∧x3 and s = x0 +x1+x2+x3. Ex
ept for the lower few bits, ea
houtput bit of α is equal to 1 almost half of the time. Due to the properties of anodd parameter, one has [α]0 = 1, meaning that the least signi�
ant bit-sli
e isalways mapped by So. Consequently, the bits from the least signi�
ant bit-sli
eof the state will be referred as irregular bits.Let us de�ne the spe
i�ed proposals. In TSC-1, the powers of the S-box are
e = 2 and o = 1, the 
onstant used in the odd parameter is C = 0x12488421,and the S-box (in standard notation) and the output fun
tion are de�ned by

S = (3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12)
g(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3) .

(3)In TSC-2, one has e = 0 (hen
e, the identi
al mapping is used), o = 1 and
C = 0x00000001. The S-box and the output fun
tion are de�ned by



S = (5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0)
g(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3) .

(4)The output fun
tions have a period of 2128, however, three state variables in theoutput equation determine the remaining variable, hen
e the maximum se
urityof the 
iphers is 96 bit. Furthermore, there are some time-memory tradeo�s onTSC with large pre
omputation time 
omplexities.3.2 Atta
king the Stream Cipher TSC-1In this se
tion, we present a linearisation atta
k on TSC-1. Probabilisti
 linearrelations in the update fun
tion (i.e. relations between state bits at di�erent timeinstants) and in the output fun
tion (i.e. relations between state bits and outputbits) are 
ombined, in order to obtain relations between output bits at di�erenttime instants. Provided that the relations are biased, the output of TSC-1 
anbe distinguished from a random stream.Let us �rst dis
uss a linear approximation of the T-fun
tion. We fo
us on asingle bit [xt
j ]i and analyse the statisti
al e�e
t of ∆ iterations to this bit. Let

Y∆ be the indi
ator variable of the event [xt
j ]i = [xt+∆

j ]i, implying that a �xedbit is repeated after ∆ iterations. After ∆ iterations, bit-sli
e i (in
luding thebit under observation) is mapped δ times by S, with ∆ ≤ δ ≤ 2∆ (the mapping
S is applied 2∆ − δ times, and the mapping S2 is applied δ − ∆ times). Hen
e,in order to 
ompute Pr(Y∆ = 1), we have to analyse the distribution of δ andthe bit-�ip probabilities of the mappings Sδ.Let us denote b∆(δ) the probability that after ∆ iterations, the S-box isapplied δ times. For regular bit-sli
es, we reasonably assume equal probabilitiesfor the appli
ation of S and S2 (whi
h is, however, a simpli�
ation for some lowerbit-sli
es), and binomial distribution for b∆,

b∆(δ) =

(

∆

δ − ∆

)

·
(

1

2

)∆

. (5)For the irregular bit-sli
e, it is b∆(δ) = 1 for δ = ∆, and zero otherwise.In order to des
ribe the e�e
t of the mappings Sδ, let us analyse the S-box.We will denote w an uniform random number 0 ≤ w ≤ 15, and i an index
0 ≤ i ≤ 31. Let also Xδ be the indi
ator variable of the event [w]i = [Sδ(w)]i forany �xed bit position i. The S-box is designed su
h that the bit-�ip probabilityfor an appli
ation of S and S2 is balan
ed. However, there is a huge bias of thebit-�ip probability for some multiple appli
ations of S, namely for Pr(Xδ = 1)with δ = 0 mod 4 (this observation is of 
ourse portable to the mapping S2).We �nd Pr(X4 = 1) = Pr(X12 = 1) = 1/8, Pr(X8 = 1) = 3/4 and of 
ourse
Pr(X16 = 1) = 1. These results are independent of bit-position i, other values of
δ result in balan
ed probabilities.



Finally, the bit-�ip probability P (Y∆) of a single bit in the state for ∆ iter-ations simply be
omes the weighted sum
Pr(Y∆ = 1) =

2∆
∑

δ=∆

Pr(Xδ = 1) · b∆(δ) . (6)We �nd a maximal bias for ∆ = 3 with Pr(Y3 = 1) = 0.3594, and still alarge bias for many other values of ∆. The predi
ted probabilities are in goodagreements with experiments. In the 
ase of irregular bits, (6) simply be
omes
Pr(Y∆ = 1) = Pr(X∆ = 1) with a large bias for ∆ = 0 mod 4.In the �
tive 
ase of a perfe
t single-
y
le S-box (whi
h, however, does notexist) with Pr(Xδ = 1) = 1/2 for δ 6= 16 and Pr(X16 = 1) = 1, (6) be
omes
Pr(Y∆ = 1) = (b∆(16) + 1)/2 for regular bits. A maximal bias is obtained for
∆ = 11, resulting in Pr(Y11 = 1) = 0.6128.Let us 
ombine the relation (6) with a simple linear approximation of theoutput fun
tion. The bias of Y∆ strikes through the output fun
tion, su
h thatthe loops in the state are also present in the output. We 
onsider a single bit [yt]iof the output and analyse the statisti
al e�e
t of ∆ iterations to this bit. Let Z∆be the indi
ator variable of the event [yt]i = [yt+∆]i, implying that a �xed bit ofthe output is repeated after ∆ iterations. We approximate the output fun
tionby [y]i = [x0]i+8 ⊕ [x1]i+17 ⊕ [x2]i+25 ⊕ [x3]i ⊕ c, for i = 0, . . . , 31 (additions ofindi
es are performed modulo 32) and a 
arry bit c ∈ {0, 1}. For bit-positions
i = 0, 7, 15, 24, one irregular bit is involved in the linear approximation of [y]i;
onsequently, these output bits are 
alled irregular. Negle
ting the 
arry bit andavailing the fa
t that the output bits are 
omposed of independent state bits, theprobability Pr(Z∆ = 1) is approximated using Matui's Piling-up Lemma [12℄.For regular output bits, we obtain

Pr(Z∆ = 1) =
1

2
+ 23 ·

(

Pr(Y∆ = 1) − 1

2

)4

. (7)Noti
e that ǫ = Pr(Y∆ = 1)− 1
2 is the probability bias. In the 
ase of irregularoutput bits, one of the four fa
tors ǫ in (7) is substituted by ǫ′ = Pr(X∆ =

1) − 1
2 . Let us 
onsider the 
ase of ∆ = 3; it is Pr(Z3 = 1) = 0.5031 for regularoutput bits (and a balan
ed probability for irregular output bits). However, as wenegle
ted the 
arry bit in this simple model, the above probability is 
onsideredas an upper limit. Noti
e that the 
arry is also biased and in
lines towardsabsorbing itself. Experiments show that indeed, most of the regular output bitsare biased for ∆ = 3. We emphasise that higher bits are a�e
ted equivalentlyto lower bits. Due to the integer addition, the exa
t bias depends on the bit-position. We �nd the maximum bias for bit-position i = 1 with p′ = 0.5003. Asimilar result is obtained for ∆ = 8 and i = 0.This biased probability is a

essible to a 
ryptanalyst with known plaintextand may be used to distinguish the out
ome of the 
ipher from a uniform randomout
ome. With the uniform probability p = 1/2 and the biased probability p′ =

p(1+ q), the required data 
omplexity be
omes O(1/pq2), see Theorem 2 in [11℄.



Consequently, for p′ = 0.5003 we expe
t a data and online time 
omplexityof about 222 (16 MB of keystream); o�ine time 
omplexity is negligible. Weperformed a number of experiments (taking all biased bits into a

ount) andveri�ed the predi
ted 
omplexity, given a small probability of error.As des
ribed above, a variant of this atta
k even works without taking intoa

ount any spe
i�
 property of the single-
y
le S-box. Finally, we mention thatthe bias of Z∆ 
an be transformed in a state-re
overy atta
k by guess-and-determine. In a �rst step, we guess the least-signi�
ant bit-sli
e [xt]0, whi
h maybe iterated separately. The four 
orresponding bits are subtra
ted independentlyfrom appropriate output bits in order to 
onstru
t a modi�ed index variable.Considering (7), we expe
t the bias to signi�
antly in
rease for a right guess,and we expe
t a balan
ed output for a false guess. After re
overing [xt]0, wemay 
ontinue with 
onse
utive bit-sli
es. Considering all available equations,experiments showed that a single bit-sli
e may be a

epted or reje
ted (witha reasonable probability of error) using 222 iterations. Repeating this for all 24values of a single bit-sli
e, and for all 25 bit-sli
es, we obtain an overall 
omplexityof about 231. A similar result has also been obtained by Peyrin and Muller [14℄.3.3 Atta
king the Stream Cipher TSC-2In both versions of TSC, the 32 bits of α determine the update of the 128 bitsof the state. Hen
e we may wait for appropriate values of α in order to initiatesome atta
ks. In TSC-2, an interesting 
ase is the minimal-weight parameter
α = 1, for whi
h only the least signi�
ant bit-sli
e is modi�ed and two similarsu

essive outputs may be dete
ted. The dete
tor is an algorithm whi
h takesas input the keystream z and gives out 1 if α = 1, and 0 otherwise. The dete
tor
an make two types of errors: it 
an either output 1 when α 6= 1 (false positives)or 0 when α = 1 (false negatives). The error probabilities are denoted by A and
B, respe
tively.The 
omplete set of states U resulting in α(xt) = 1 is given with the 
on-ditions ∑3

i=0 xt
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x0, 0x3, 0x5, 0x6,

0x9, 0xA, 0xC}. In the following, let us assume that su
h a state o

urs at time
t = 0. Hen
e we have α0 = 1, and only the least signi�
ant bit-sli
e of thestate is 
hanged by the mapping f : x0 → x1; 
onsequently, we suppose thatthe subsequent outputs y0 and y1 have low distan
e. Let us analyse the exem-plary integer modular di�eren
e y0 − y1 for x ∈ U with [x0]0 = 0x5; we �ndthat [x1]0 = 0x4 and [x0]i = [x1]i for i 6= 0. The output fun
tion produ
es
y0 = y1 +1≪25+1≪3+1≪12 and hen
e y0−y1 = 0x02001008. In fa
t, we �ndthat y0 − y1 = const for any x ∈ U , where the 
onstant const depends only onthe least-signi�
ant bit-sli
e [x0]0 in most of the 
ases, see Tab. 2. For less than
1% of the states in U , the integer modular di�eren
e is not 
onstant be
ause anaddition in the output fun
tion may 
ause a 
arry bit, whi
h propagates fromthe msb to the lsb due to the 
y
li
 shift.



Table 2. List of output di�eren
es for α = 1, some of whi
h will be applied in theatta
k
[x0]0 [x1]0 y0

− y1

0x0 0x5 0xFDBFEFF8

0x3 0xC 0x01C05007

0x5 0x4 0x02001008

0x6 0x3 0xFE3FEFF8

0x9 0x8 0x02001008

0xA 0x1 0xFE002FF9

0xC 0x7 0xFDFFAFF9Dete
tion of single 
onstants only would result in a huge amount of falsealarms. However, examining Tab. 2, we �nd a path4 for the iteration of [x0]0with 0x6 → 0x3 → 0xC whi
h is 
losed in U , meaning that α0 = α1 = α2 = 1.Therefore, we may restri
t the dete
tor to dete
t only a subset of states V ⊂ U ,where V is de�ned by the 
onditions ∑3
i=0 xt

i ∈ {0x00000000, 0x80000000} and
[xt]0 ∈ {0x6, 0x3}. The dete
tor takes three su

essive outputs, 
omputes twodi�eren
es of 
onse
utive outputs and 
ompares them with the �xed values; ifthere is a mat
h of both, the dete
tor returns 1, and 0 otherwise. The probabilityof x ∈ V is 2−33, and a false dete
tion due to random outputs5 o

urs withprobability 2−64. As the di�eren
es are 
onstant almost all the time, the error
B (whi
h would in
rease the running time of the dete
tor) is negligible, too.The time and data 
omplexity is around 233 (no pre
omputation and negligiblememory).The dete
tor may be transformed in a distinguisher by feeding the dete
torwith a �xed amount of data n. If the dete
tor always returns 0, then the dis-tinguisher returns 0 (random stream); if the dete
tor returns 1 at least on
e,then the distinguisher returns 1 (keystream produ
ed by TSC-2). The probabil-ity of false positives may be negle
ted, and the probability of false negatives is
B = (1 − 2−33)n. For B = 0.05, we obtain a data 
omplexity of about n = 234.With a su

essful dete
tion of α(xt) = 1, we obtain the information∑3

i=0 xt
i ∈

{0x00000000, 0x80000000}, as well as the value of bit-sli
e [xt]0 and the out-put equation g(xt) = yt. This information may be used for a state-re
overyatta
k with a 
omplexity smaller than 296. However, TSC-2 appears to be seri-ously injured with our e�
ient distinguishing atta
k, and we did not study thestate-re
overy atta
k in more detail.4 Be
ause of the triangular stru
ture, the least signi�
ant bit-sli
e may be iteratedseparately.5 In order to in
rease the set V, we do not make use of the 
onne
tion of the wholepath.



4 Con
lusionsIn this paper, we examined some spe
i�
 proposals of stream 
iphers based onT-fun
tions. Two proposals by Klimov and Shamir are based on the squaringoperation, namely a single word T-fun
tion as well as a previously unbrokenmulti-word T-fun
tion with a 256-bit state, both revealing some part of the state.It turned out that the integer di�eren
es of 
onse
utive outputs have signi�
antstatisti
al deviation even in the high-order bits. Based on that deviation, wedes
ribed e�
ient distinguishing atta
ks with a 232 data 
omplexity. We 
on
ludethat the squaring operation has some undesirable properties when used in thedesign of T-fun
tions and possibly in other 
ryptographi
 primitives. The twoproposals by Hong et al. have a 128-bit state, whi
h are 
ontrolled by a 32-bitparameter and tiny S-boxes. The output fun
tion uses some integer additionsand rotations. For one of the proposals, we found small loops in the state andin the output produ
ed by the S-box, resulting in a distinguishing atta
k of
omplexity 222. For the other proposal, we wait for an appropriate value ofthe parameter, whi
h produ
es some dete
table stru
ture in the output. Thisresults in a distinguisher of 
omplexity 234. We 
on
lude that the small size ofthe parameter (and potentially also the tiny S-boxes) may be 
riti
al, and thatthe integer additions and rotations in the output fun
tions have a very limitedrandomizing e�e
t.A
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ent paper, Baignères et al. [1℄ have analysed optimal algorithms (interms of number of samples) aiming at distinguishing two random sour
es whoseprobability distributions are 
ompletely known to a 
ryptanalyst. We brie�yre
all the framework of Baignères et al.Let D0 and D1 be two probability distributions sharing the same support X .We 
onsider the problem of distinguishing these two distributions using ν iid



samples. A (possibly 
omputationally unbounded) algorithm δν whi
h takes asinput a sequen
e of ν realizations zν distributed a

ording to D where either
D = D0 or D = D1, and outputs 0 or 1 a

ording to its de
ision, is 
alled adistinguisher. It 
an be fully determined by an a

eptan
e region A ⊂ X su
hthat δν(zν) = 1 i� zν ∈ A. The ability to distinguish a distribution from anotheris usually measured in terms of the advantage of the distinguisher and is de�nedby

Advδν =
∣

∣

∣Pr
Dν

0

[δν(Zν) = 0] − Pr
Dν

1

[δν(Zν) = 0]
∣

∣

∣ .Hen
e, the distinguisher 
an make two types of errors: it 
an either output 0 when
D = D1 or 1 when D = D0; we will denote these respe
tive error probabilities by αand β, respe
tively, and the overall error probability is de�ned as πe = 1

2 (α+β).In [5℄ it is shown that it is easy to de�ne expli
itly an optimal distinguisherin this pre
ise statisti
al setting. Indeed, given a �xed overall probability oferror, it is su�
ient for an optimal distinguisher to 
ount the number νx(zn)of o

urren
es of all possible symbols x ∈ X in the sample zn, to 
ompute thelog-likelihood ratio
llr(zν) =

∑

x∈X

νx(zν) log
PrD0

[x]

PrD1
[x]

(8)and to output 0 as de
ision i� llr(zν) > 0. If we assume that the distributions
D0 and D1 are 
lose to ea
h other, i.e. PrD0

[x] = πx and PrD1
[x] = πx + εxwith |εx| ≪ πx for all x ∈ X , then the following result gives a very a

urateestimation of the ne
essary number of samples.Theorem 1 (Baignères et al. [1℄). Let X1, . . . , Xν be iid random variablesde�ned over X with probability distribution D, let D0 and D1 be two distributionssharing the same support whi
h are 
lose to ea
h other, where πx = PrD0

[x] and
πx + εx = PrD1

[x]. Let d be a real number de�ned by
d = ν

∑

x∈X

ε2
x

πx
.Then, the overall probability of error of an optimal distinguisher between D0 and

D1 is approximately
πe ≈

1√
2π

∫ −

√
d

2

−∞

e−
t
2

2 dt .Baignères et al., based on this result, introdu
ed then what seems to be a natural�measure�, named squared Eu
lidean imbalan
e and denoted ∆(D0, D1), betweena distribution D0 and a 
lose distribution D1 de�ned by
∆(D0, D1) =

∑

x∈X

ε2
x

πx
, (9)sin
e ∆(D0, D1) is dire
tly linked to the number of sample needed to distinguishboth probability distributions with a good su

ess probability.


