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2 Unconditionally secure secret-key agreement

2.1 Motivation

One of the fundamental problems in cryptography is to exchange a message
between Alice, the sender, and Bob, the receiver such that an eavesdropper,
Eve, cannot have any information about this message, or in other words,
that Eve has no other possibility as guessing the message, even with an infi-
nite amount of computer power. Cryptosystems which allow such a level of
security, the perfect secrecy, are said to be information theoretically secure.

At this point, we can notice that the majority of the cryptosystems which
are used today don’t allow such a level of security; their are based on the
assumption that the computer power of Eve is finite, that it would take too
much time (months, years, or even more) for the most powerful machines to
break these algorithms. Their are said to be computationally secure.

Shannon showed that communication can only take place in perfect secrecy
if the key used for the encryption has at least so much entropy as the mes-
sage itself. Therefore, for a long time, it was widely believed that perfect
secrecy is not practical to use.

Recently it was pointed out by researchers that Shannon’s assumptions for
his theorem are unnecesseraly unrealistic : in its model, Eve has a perfect
knowledge of the cipher text. It was shown that the noise of physical com-
munication channels, which is a natural property, can be used to generate an
(almost) perfect secure key; furthermore, it was shown that it is beneficial
for Alice and Bob to exchange additionally messages over an other channel,
even if it is totally insecure. A goal of information theory being to find good
codes which allow to communicate over a noisy channel, it is very surprising
to know that this noise can be used for cryptographic purposes.

Another interesting direction for the purpose of generating perfect secure
keys is the quantum cryptography, which is based on Heisenberg’s uncer-
tainty principle. By using this fact, which states that there are pairs of
incompatible properties in the quantum world, i.e., that measuring a prop-
erty (such that the polarization of a photon) randomizes necessarily the
other, Benett et al [1] introduced a basic protocol for secret-key agreement.
We must note that quantum cryptography is expensive to implement, which
is not the case in using the noise of communication channels.

A direction of the recent research in the area of noisy channels is to char-
acterize the situations where it is possible to agree on a perfect secret key.
The study of special scenarii goes in this way, the ultimate goal being to find
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Figure 1: The general scenario

when secret-key agreement is possible for the general case, which is charac-
terized by a probability distribution PXY Z without special properties.

2.2 The secret-key rate

As pointed out in the previous section, the goal is to characterize mathe-
matically the situations where perfect secret-key agreement is possible.

Consider the general scenario (see Figure (1)), which was first described
in [5] : Alice, Bob and Eve have access to repeated, independent realiza-
tions of random variables X, Y and Z, respectively, with joint probability
distribution PXY Z . A special scenario could be the following : PXY , PXZ

and PY Z all describe independent binary symmetric channels, for example.
Assume that Eve has no information about X and Y other than through her
knowledge of Z. Furthermore, assume that Alice and Bob can communicate
over an insecure, but authenticated channel. Finally, Alice and Bob know
the distribution PXY Z .

A protocol for this general scenario can be described as follows : at each step,
either Alice or Bob sends a message to Bob or vice-versa. These messages
depends on the random variables X and Y and on the messages exchanged
in the previous steps. We can denote without loss of generality the messages
sent by Alice with C1, C3, C5, ... and those by Bob with C2, C4, C6, .... At
the end of a t-steps protocol, Alice and Bob each compute a key S and S′,
respectively, as functions of their own random variable and the messages
Ct = [C1, C2, ..., Ct] exchanged over the insecure channel. Their goal is to
maximize the entropy H(S) of the key under the condition that S and S′ are
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the same keys with a high probability and that Eve has very little knowl-
edge about one of these two keys. We can summarize these conditions more
formally as follows :

H(Ci|Ci−1X) = 0 for odd i (1)
H(Ci|Ci−1Y ) = 0 for even i (2)

H(S|CtX) = 0 (3)
H(S′|CtY ) = 0 (4)
P [S 6= S′] ≤ ε (5)
I(S;CtZ) ≤ δ (6)

where ε and δ are very small.

The secret-key Rate S(X, Y ||Z) is defined as the maximal rate at which
Alice and Bob can generate a secret key by public discussion :

Definition 1 (Secret-Key rate)
The secret-key rate of X and Y with respect to Z, denoted S(X, Y ||Z), is
the maximum rate at which Alice (X) and Bob (Y ) can agree on a secret key
S while keeping the rate at which Eve (Z) obtains information arbitrarily
small, or more formally, it is the maximal rate R such that ∀ε > 0 there
exists a protocol for sufficiently large N satisfying (1)-(5) with X and Y
respectively replaced by XN and Y N satisfying

1
N

I(S;CtZN ) ≤ ε (7)

and achieving
1
N

H(S) ≥ R− ε (8)

2.3 The scenario EC2

To characterize when information theoretically secure secret-key agreement
is possible is equivalent to search conditions on PXY Z for which S(X, Y ||Z) 6=
0. It seems to be very hard to solve this problem for general joint probability
distributions. Therefore, different special scenarii are to be investigated (see
[4], e.g.).

One of them is the so-called scenario EC2, which is presented in Figure
(2). Bob’s information about Alice’s random variable is biased by a binary
symmetric channel with a probability ε. Eve receives X and Y through two
independent erasure channels which have an erasure probability of 1 − rX

and of 1 − rY , respectively. Or in a few words, Bob always receives Alice’s
bit, but this bit is perhaps false, while Eve don’t receive always Alice’s and
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Figure 2: The scenario EC2

Bob’s bits, but for her, a received bit is a true bit. At first sight, it can be
surprising that perfect secure secret-key agreement is possible in this situa-
tion; the possibility of exchanging messages over the insecure channel allows
it.

2.3.1 Protocol RC

By using protocol RC (“Repeat-Code”), which is described below, one can
show that secret key agreement is possible.

Protocol RC

Let N be fixed. Alice chooses a random bit C, and she
sends

[C ⊕X1, C ⊕X2, ..., C ⊕XN ]

over the public channel. Bob computes

[(C ⊕X1)⊕ Y1, ..., (C ⊕XN )⊕ YN ]

and accepts exactly if and only if this is equal to either
[0, ..., 0] or [1, ..., 1].

In this situation, Alice and Bob make use of a repeat code of length N with
only the two codewords [0, ..., 0] and [1, ..., 1]. The trick here is that they
reduce their error probability by using codewords of length N and also that
they improve their situation compared with the opponent’s by accepting the
bit only in case of highly reliable communications.
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First one can note that the adversary Eve takes advantage from a greater N ,
too. Secondly it’s clear that Eve’s optimal strategy in this case for guessing
C is to compute the block [(C ⊕X1)⊕ Z1, ..., (C ⊕XN )⊕ ZN ] and to take
a majority decision about the bits in this block.

The analysis of scenario EC2 with protocol RC was done in [4]. In the
following, we use this notation : let α be the probability that X 6= Y , and
let rX and rY be the probabilities that Eve reads respectively X and Y . We
assume that Alice’s information is better protected than Bob’s : rY ≥ rX .
A first upper bound on rX comes from the following theorem, which was
first proved in [6]. A simplified version of the proof is in [8].

Theorem 1
For every distribution PXY Z ,

S(X;Y ‖ Z) ≥ max{I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)} (9)

The following lemma comes from [8]. We give a slightly more detailed proof:

Lemma 1
In scenario EC2, S(X;Y ‖ Z) is strictly positive if

rX ≤ 1− h(α)
1− rY + rY h(α)

Proof :

We have rX ≥ rY , so the term I(X;Y )− I(X;Z) in (9) applies. We have :

I(X;Y ) > I(X;Z)
H(X)−H(X|Y ) > H(X)−H(X|Z)

−H(X|Y ) > −H(X|Z)
H(X|Y ) < H(X|Z)

We now have to compute these two values.

H(X|Y ) = h(α)
H(X|Z) = 1 · PZ [∆∆] + h(α)PZ [∆0] + h(α)PZ [∆1]

where
PZ [∆∆] = (1− rX)(1− rY )
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and

PZ [∆0] = PZ [∆1] = 0.5(1− rX)rY α + 0.5(1− rX)rY (1− α)
= 0.5(1− rX)rY .

This gives us

H(X|Z) = (1− rX)(1− rY ) + h(α)(1− rX)rY

We have as straightforward calculation :

h(α) < (1− rX)(1− rY ) + h(α)(1− rX)rY

= 1− rX − rY + rXrY + h(α)rY − h(α)rXrY

= 1− rX (1 + rY h(α)− rY )− rY + h(α)rY .

rX (1− rY + h(α)rY ) < 1− h(α)− rY + h(α)rY

= 1− h(α) + rY (h(α)− 1) .

rX (1 + rY (h(α)− 1)) < (h(α)− 1) (rY − 1).

rX <
(h(α)− 1) (rY − 1)
1 + rY (h(α)− 1)

=
rY − 1
1

h(α)−1 + rY

=
rY − 1

1+rY (h(α)−1)
h(α)−1

=
(rY − 1) (h(α)− 1)
1 + rY (h(α)− 1)

=
rY h(α)− h(α)− rY + 1

1 + rY h(α)− rY

=
1 + rY h(α)− rY

1 + rY h(α)− rY
− h(α)

1 + rY h(α)− rY

= 1− h(α)
1 + rY (h(α)− 1)

.

which concludes the proof.

2

2.3.2 Protocol RCE

At this point, one can note that it can be surprising to know that protocol
RC allows secret-key agreement, because this code doesn’t seem to be very
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appropriate in a situation where the adversary Eve has a perfect knowledge
of X or Y with some positive probability. Revealing one bit of the repeat-
code block means revealing the entire block. A protocol using blocks which
contain a certain number of incorrect bits (less than the half) is better in this
situation; on the other side, the effect that Alice’s and Bob’s bits become
more reliable is weaker with this protocol. Protocol RCE (“Repeat-Code
with Errors”) was proposed in [8, 4] :

Protocol RCE

Let N be fixed. Bob randomly chooses a bit C and a
random N -bit block [C1, ..., CN ] such that tN of the bits
are equal to C and (1 − t)C are equal to its complement
C ′ := C ⊕ 1. t > 1/2 is a parameter of the code, and tN is
an integer. Bob compute

[C1 ⊕ Y1, ..., CN ⊕ YN ]

and sends this block over the public channel. Alice com-
putes

[(C1 ⊕ Y1)⊕X1, ..., (CN ⊕ YN )⊕XN ]

and accepts if and only if this equals [0, ..., 0] or [1, ..., 1].

We can note that protocol RCE corresponds to Protocol RC for t = 1.
RCE is, as protocol RC, efficient in terms of computation but wasteful with
respect to the achievable rate of generated secret-key.

2.3.3 The analysis of protocol RCE

An analysis of Scenario EC2 with protocol RCE is made in [8, 4]. First, we
can compute the conditional probability βN that Alice receives the bit sent
by Bob incorrectly, given that she accepts. We have :

βN =
αtN (1− α)(1−t)N

(1− α)tNα(1−t)N + αtN (1− α)(1−t)N
(10)

Let be
K = K(t) :=

1
4t− 2

(11)

The equation (10) can be approximated as follows :

Lemma 2

αtN (1− α)(1−t)N

(1− α)tNα(1−t)N + αtN (1− α)(1−t)N
≤

(
α

1− α

)N/(2K)

(12)
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Proof :

αtN (1− α)(1−t)N

(1− α)tNα(1−t)N + αtN (1− α)(1−t)N
=

αtN (1− α)(1−t)N

αtN
(
(1− α)tNα(1−2t)N + (1− α)(1−t)N

)
=

(1− α)(1−t)N

(1− α)tNα(1−2t)N + (1− α)(1−t)N

=
(1− α)(1−t)N

(1− α)(1−t)N
(
1 + α(1−2t)N (1− α)(2t−1)N

)
=

1
1 + α−(2t−1)N (1− α)(2t−1)N

=
1

1 + (1−α
α )(2t−1)N

≤ 1(
1−α

α

)(2t−1)N

=
(

α

1− α

)(2t−1)N

According to (11), we have finally

αtN (1− α)(1−t)N

(1− α)tNα(1−t)N + αtN (1− α)(1−t)N
≤

(
α

1− α

)N/(2K)

(13)

which concludes the proof.

2

It seems difficult to give the optimal strategy for Eve in the case of pro-
tocol RCE in the scenario EC2. Such a strategy will clearly minimize
her error probability. We summarize the different possibilites for Eve to
make an error in an event tree (see Figure (3)). First of all, Alice can
accept the bit (AliceB) or not (notAliceB). In the latter case, which is
clearly the most frequent one, the protocol go on. In the former case,
Alice accepts a wrong bit (AliceW) or not (notAliceW). The latter situ-
ation brings us to A. Now, Eve’s channel with Alice can be informative
(ChannelA), with a more or less high probability (in this case, one char-
acter only need to be read by Eve), or not informative (notChannelA). In
the former case (situation B), if Eve knows one bit of the block of Alice,
then her error probability γN is equal to 0. Finally, when Eve receives
sN of the tN correct bits of Bob’s block and exactly the same number
of incorrects bit, and that she learns nothing about Alice’s block (she re-
ceives only erasure symbols), then we are in the situation C if we take the
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Figure 3: An event tree for Eve’s error probability

s that maximizes Eve’s error probability, and in the situation D otherwise.
We have seen that in situation B, Eve’s error probability is clearly defined.
In case of C, the optimal strategy for Eve is to flip a fair coin, because she
has no information about Bob’s block, half of the bits being wrong, the other
half being right. This gives us a lower bound for Eve’s error probability :

γN ≥ 1
2
· max
0≤s≤(1−t)

{(
tN

sN

)
(rY )sN (1− rY )(t−s)N

·
(

(1− t)N
sN

)
(rY )sN (1− rY )(1−t−s)N

· (1− rX)N

} (14)

Otherwise, situation D is uninteresting because of the asymptotic behavior
of the binomial coefficients, and situation A can slightly increase Eve’s error
probability, if her channel with Bob is uninformative. The most interesting
potential improvement is the case where the number of false bits which Eve
receives from Bob is not equal to the number of true bits. Unfortunately, it
is difficult to find the right weights of the different cases in the expression.

To give an analysis of S(X, Y ||Z) in this case, one can use Lemma (3)
(see [4, 8]).
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Lemma 3
Let X, Y and Z be arbitrary random variables, and let C be a bit, randomly
chosen by Alice. Assume that for all N , Alice can generate a message M
from XN and C (and possibly some random bits) such that with some
probability pα,N > 0, Bob (who knows M and Y N ) publicly accepts and
can compute a bit C ′ such that P [C 6= C ′] ≤ bN for some b ≥ 0. If in
addition, given that Bob accepts, for every strategy for guessing C when
given M and ZN , the average error probability γN of Eve is at least cN for
some c > b and for sufficiently large N , then S(X, Y ||Z) > 0.

As approximation of (14), the following is used in [4, 8]:

Lemma 4
The lower bound (14) implies that

γ
2K/N
N ≥ 1− 1

4K
− 1

16(1− rY )K
− 2KrX (15)

if rY ≤ 1− t holds, and if N is sufficiently large.

To find a good condition on rX , the idea is to find the best possible choice for
K := K(t) with respect to the fixed parameters α and rY . Furthermore, the
condition on rY in lemma (4) must hold. This optimal choice of K leads to an
upper bound on rX , such that if rX is smaller than this bound, then protocol
RCE works for secret-key agreement. By using lemma (3), which states that
it’s sufficient for secret-key agreement by public discussion if Eve’s error
probability about the bit sent by Bob is asymptotically greater than Alice’s
error probability for N −→∞, it is possible to prove the following bound:

Theorem 2
In scenario EC2, protocol RCE allows for secret-key agreement, and S(X, Y ||Z)
is hence positive, if

rX <
2(1− α

1−α)2(1− rY )
5− 4rY

(16)

(when 1− α/(1− α) ≤ 5/4− rY ), or if

rX < (1− rY )
(

1− α

1− α
− 1− rY

2
− 1

8

)
(17)

(when 1− α/(1− α) > 5/4− rY ).

2.4 Towards a new lower bound

We give now our own attempts to analyse the protocol RCE in the scenario
EC2. The basis is a different estimation of expression (14). We need first a
mean to approximate the binomial coefficients, which are not very convenient
to compute with. The following result comes from the well-known Stirling
formula :
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Lemma 5
For a constant C and a sufficiently large N , we have :(

aN

bN

)
≥ C√

N

(
aa

bb(a− b)a−b

)N

.

Proof :

Stirling’s formula states that
√

2πNN+1/2e−Ne(12N+1)−1

< N ! <
√

2πNN+1/2e−Ne(12N)−1

Therefore, we have:(
aN

bN

)
=

(aN)!
(bN)! ((a− b)N)!

≥
√

2π (aN)aN+1/2 e−aNe(12aN+1)−1

√
2π (bN)bN+1/2 e−bNe(12bN)−1

√
2π ((a− b)N)(a−b)N+1/2 e−(a−b)Ne(12(a−b)N)−1

=
1√
2π

· e(12aN+1)−1

e(12(a−b)N)−1e(12bN)−1 ·
(aN)aN+1/2

(bN)bN+1/2((a− b)N)(a−b)N+1/2

=
1√

2πN
· e(12aN+1)−1

e(12(a−b)N)−1e(12bN)−1 ·
√

a√
b
√

a− b
·
(

aa

bb(a− b)a−b

)N

=
1√

2πN
· e

−12abN+12b2N+2a2N+a
12(12aN+1)(b−1)bN ·

√
a√

b
√

a− b

(
aa

bb(a− b)a−b

)N

Let C:=
√

a√
b
√

a−b
√

2π
. The second part of the product tends to 1 as N →∞.

Thus, we conclude that(
aN

bN

)
≥ C√

N

(
aa

bb(a− b)a−b

)N

.

2

Lemma 6
The lower bound (14) implies that

γ
2K/N
N ≥(1− 2KrX) ·

(
1− 1

2K(1− rY )

)
·
(

(4K2 − 1)(1− rY )2rY

(4K2(1− rY )2 − 1)1−rY (4K)2rY

)K (18)

if rY /2 ≤ 1− t holds and if N is sufficiently large.

Proof :
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We have to approximate (14). We can first note that rY /2 ≤ 1−t means that
s := rY /2 is a possible choice; in fact, this is the optimal one. By applying
Lemma 5 and by replacing the binomial coefficients by the corresponding
expression, we get

γ
1/N
N ≥ tt

( rY
2 )

rY
2 (t− rY

2 )t− rY
2

· (1− t)1−t

( rY
2 )

rY
2 (1− t− rY

2 )1−t− rY
2

·
(

1
2

)1/N

· rrY
Y (1− rY )1−rY (1− rX)

=
tt(1− t)1−t(

t− rY
2

1−rY

)t− rY
2

(
1−t− rY

2
1−rY

)1−t− rY
2

· 2rY − 1
N · (1− rX)

We can now take a first approximation :

lim
N→+∞

2rY − 1
N = 2rY (19)

Furthermore, as rY ranges over [0, 1], the right part of equation (19) ranges
over [1, 2]. So we can eliminate this term. Our expression resumes now to :

γ
1/N
N ≥ tt(1− t)1−t(

t− rY
2

1−rY

)t− rY
2

(
1−t− rY

2
1−rY

)1−t− rY
2

· (1− rX) (20)

Let be K := 1
4t−2 . We now have

(1− t)1−t · tt = (2K + 1)
2K+1
4K · (2K − 1)

2K−1
4K · 1

4K
(21)

Introducing (21) in (20), we get

γ
1/N
N ≥

 (2K + 1)2K+1(2K − 1)2K−1(
2K(1−rY )+1

1−rY

)2K(1−rY )+1 (
2K(1−rY )−1

1−rY

)2K(1−rY )−1


1

4K

· (1− rX) · (4K)−rY

(22)
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As last algebraic modification before doing approximations, we raise (22) to
the power 2K and we do a straightforward calculation to get

γ
2K/N
N ≥

(
4K2 − 1

(4K2(1− rY )2 − 1)1−rY

)K

·

√
(2K + 1)(2K(1− rY )− 1)
(2K − 1)(2K(1− rY ) + 1)

·
(

(1− rX)(1− rY )rY

(4K)rY

)2K

=
(

4K2 − 1
(4K2(1− rY )2 − 1)1−rY

)K

·
√

2K + 1
2K − 1

·

√
2K(1− rY )− 1
2K(1− rY ) + 1

·
(

1
4K

)2KrY

· (1− rX)2K · (1− rY )2KrY

(23)

Now we can try to approximate (23) to get a lower bound as simple and

as tight as possible. First we can note that
√

2K+1
2K−1 ≥ 1 ∀K ≥ 1

2 . Hence

we can eliminate this term from (23). Secondly we have (1 − rX)2K ≥
(1− 2KrX). And finally,√

2K(1− rY )− 1
2K(1− rY ) + 1

=

√
1− 2

2K(1− rY ) + 1

≥

√
1− 1

K(1− rY )

≥1− 1
2K(1− rY )

Putting these observations into (23) gives us

γ
2K/N
N ≥(1− 2KrX) ·

(
1− 1

2K(1− rY )

)
·
(

(4K2 − 1)(1− rY )2rY

(4K2(1− rY )2 − 1)1−rY (4K)2rY

)K (24)

which concludes the proof.

2

Unfortunately, this bound is not very useful because of its complexity. A
simple simulation showed that for t > 0.7, this bound is better as (4) in
more than 90% of the time. But the problem is that to get a result such
as Theorem 2, the expression (24) needs to be simplified and approximated
a lot more: we need to compare it to Bob’s error probability and to derive
it to get the optimal K. Because of the complexity of the expression, we
could not manage to find this optimal K analytically, even with the help of
Maple. However, it is not worth to invest a lot of more time to get a simpler
expression.
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3 Study of an information theoretic conjecture

In the following, we use the usual notation for information theoretic mea-
sures, H(X) for the Shannon-entropy of a random variable X and I(X;Y )
for the mutual information between the two random variables X and Y . If
not stated otherwise, log(.) is the notation for the logarithm function in base
2. [2] was used as an information theory reference book.

3.1 Introduction

The goal of the second part of this semester thesis is to analyse the following
conjecture which comes from [8]:

Conjecture 1
Let X be a binary random variable and Y , Z and U be random variables
such that Y Z −→ X −→ U is a Markov chain. Let be I(X;Y ) ≤ I(X;Z).
Then

I(U ;Y ) ≤ I(U ;Z) (25)

We can first note that this conjecture is not verified if X is not a binary
random variable. An intuitive counterexample is the following: take two
pages of a journal, each with some information about the historical devel-
opment of the stock market, for example. We can see these two pages as
the random variable Y Z. Now, we can “process” these two pages to extract
some information about a precise stock. This extracted information can be
seen as the random variable X. As last step, we cut with a shear through
the information X, and wo do this independantly from the extraction of the
information. Let’s call the result of such a process U . This is easily and
intuitively concevaible. Now, assume that X gives more information about
Y as about Z. It is possible that the shear has canceled all the information
about Z, so that U gives now more information about Z as about Y . So
this conjecture cannot hold for general random variable UXY Z.

This section is organized as follows: first we present a simulation written to
find a counterexample to this conjecture, for the cases of binary variable Y ,
Z and U and then for ternary ones. Then we present some theoretic views
about this result, and the way we did towards the proof of the conjecture.

3.2 Search for a counterexample

To be almost sure that this conjecture holds, we first search a counterexam-
ple with the help of the computer. For this purpose, we wrote two programs
in C, conj2.c and conj3.c, which are given in annexe. The next part
explains the design of these programs, which were not able to find such
a counterexample for Y ZU being binary random variable (conj2.c) and
ternary random variables (conj3.c).
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3.2.1 Pseudo-random numbers generation

First of all, we need a good pseudo-random generator, which must have the
two following properties: first, it has to have a long period, because we have
to generate several billions of pseudo-random numbers without taking the
risk of generating the same situation twice, and second, it has to be suffi-
ciently fast.

Because we are generating more than 100’000’000 random numbers in our
search, a good pseudo-random generator is pj ran3(), as recommended in
[7], Chapter 7. This generator has a period > 2 · 1018, which is extremely
large. The basic idea of this algorithm is the combination of two different
sequences with different periods so as to obtain a new sequence whose period
is at least the least common multiple of the two periods. This idea comes
from [3] and the reference implementation from [7].

3.2.2 The search algorithm

We present here the complete procedure for searching counterexamples. We
treat the two cases (binary and ternary Y ZU) together, because of their
similarity.

• A random variable PY Z is randomly generated: for the binary case,
random numbers r1, r2 ∈R [0, 1] are generated, PY := {r1, 1− r1} and
PZ := {r2, 1 − r2} for the binary case, and r1, r2, r3, r4 ∈R [0, 1] are
generated, PY := {r1, (1− r1)r2, (1− r1)(1− r2)} and PZ := {r3, (1−
r3)r4, (1− r3)(1− r4)} for the ternary case. Then, PY Z := PY · PZ .

• To do the step Y Z −→ X, a stochastic matrix M1 is randomly gen-
erated: ri ∈R [0, 1] are random numbers; i := 1..4 for the binary case
and i := 1..9 for the ternary case

M1 :=


r1 1− r1

... ...

ri 1− ri


The probability distribution PX is then computed as PX := PY Z ·M1.

• In an analogous way, the step X −→ U is computed as follows: rij ∈R

[0, 1] are random numbers; the stochastic matrix is the following for
the binary case:

M2 :=
(

r11 1− r11

r21 1− r − 21

)
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and for the ternary case :

M2 :=
(

r11 (1− r11)r12 (1− r11)(1− r12)
r21 (1− r21)r22 (1− r21)(1− r22)

)
Then, PU := PX ·M2.

• As a last step, the following information theoretic values are computed:
I(X;Y )− I(X;Z) and I(U ;Y )− I(U ;Z), where

I(X;Y ) = −
∑
X

PX · log PX −
∑
X

∑
Y

PX|Y · log PX|Y

I(X;Z) = −
∑
X

PX · log PX −
∑
X

∑
Z

PX|Z · log PX|Z

I(U ;Y ) = −
∑
U

PU · log PU −
∑
U

∑
Y

PU |Y · log PU |Y

I(U ;Z) = −
∑
U

PU · log PU −
∑
U

∑
Z

PU |Z · log PU |Z

Then, these values are compared.

This process is then iterated 1′000′000′000 of times for both situations.

This took approximately 16 hours on a Sun workstation with a normal load
for each process. As conjectured, it couldn’t be found any counterexample
either for ternary or for binary random variables.
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3.3 A theoretic approach

We present now some theoretic considerations about this problem. To see
that, we can first note that it is possible to write the random variable Y Z
as a new one W . We thus have the following situation: W −→ X −→ U
being a Markov chain and X being a binary random variable.

The key observation is the following: I(W ;U) has to be monotone in I(X;U).
Or in other words, these two quantites must have the same behaviour, the
first being increasing if and only if the second is increasing, or, inversely,
they have to be decreasing at the same time. To try to understand more
deeply this fact, we use the following notation: let be the following new
random variables:

P0 := PW |X=0

and
P1 := PW |X=1

Furthermore, let be
pu := PX|U=u(0)

We can now write the two quantites I(W ;U) and I(X;U), using the defini-
tion of the mutual information of two random variables, as follows:
H(W )−H(W |U) and H(X)−H(X|U), respectively.

At this point, we can note that H(W ) and H(X) are two constant values,
and that only H(W |U) and H(X|U) are varying, with U varying. Thus, the
monotony of the two first quantites can be reduced to the mutual monotony
of the two latter. Using the notation defined formerly, we can write this as
follows: ∑

PU (u) ·H(pu · P0 + (1− pu) · P1)

has to be monotone in

−
∑

PY (y) log PY (y)

To prove this conjecture, we have to prove that this condition is holding, or
that this condition is a natural property of this kind of Markov chain.

We have studied this condition fore some simple and reduced examples,
and this experimentally. It seems that there is no major argument against
this fact. But we were unable to prove it analytically and formally. We
found very difficult to handle with this kind of mathematical expressions,
which are defined on a discrete number of cases, namely the different possi-
ble cardinalities of the random variables.

As a conclusion for this part, we claim that we are more convinced that
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this conjecture holds than at the beginning, but the lack of formal argu-
ments makes that we can cannot be totally convinced !
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4 Conclusion

In this semester thesis, we have first studied the foundations of perfect secret-
key agreement. Then, a special scenario, the RCE (repeat-code with errors)
protocol, which has been proposed and studied in [8], has been considered.
In [8], the goal was to show that protocol RCE can be better fore some
situations in the EC2 scenario; we have tried to do a more complete analy-
sis. Unfortunately, the derived bound is not useful because of its complexity.

In a second part, we have studied a conjecture, which comes from [8], too.
We first wrote a simulation, seeking a counterexample to this conjecture. It
couldn’t be found any. Then, we have tried to understand the theoretical
foundations of this conjecture. We have shown a few possibilities to get its
complete formal proof.

This semester thesis was my first “rendez-vous” with a research field. It
was very interesting to try to underestand the way that researchers take to
study the foundations of perfect secret-key agreement. I understood how
difficult it can be to proove a lemma, how frustrating it can be to try to
write down some ideas. I’m disappointed with the practical results of my
attempts, which are close to nothing, but on the other side, I’ve learned a
lot of things, and this not only in the field of cryptology. I think it’s the
more important !
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