Playing Hide-and-Seek
with Hash-DoS

Pascal Junod // HEIG-VD

Insomni I'’hack 2013, Geneva (Switzerland)

Hes

he|g vd

E ole d'Ingénierie et de Gestion
d C n de Va d

Overview

DoS and Complexity attacks
Hash DoS

BTREFS
Apache

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Denial of Service

» Goalis to make a resource unavailable to its
intended users.

» Many different ways to do it:

4

4

(Bad programmers)
DDoS with TCP SYN or HTTP queries flood
Exploitation of amplification mechanisms

Complexity attacks

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

DDoS with TCP SYN or
HTTP flood

| Attacker
—— 1-_./ '
‘r"- -‘\

Q ‘~= =J Masters GhostMarket.Net A wew e i

.',\/I. ,./l. gt D
r‘“; e amaCong - . ,..‘_q ,._-_ "
\ l { l | ' | Slaves
— . E , - :) — v »

. 7.0 ’) vy 7.)i)9 | post stmy

«
@
o
El

/ New DOOS service - attack service B3000 10 120000 bots
Hello,

1 offer serious DOOS attack service from 10 Gbps %o 100 Ghps.
| always have betweon 80,000 and 120,000 bots on my IRC hannel.

Type of attack : SYN - TCP - ICMP - LEP - HTTP - HTTPS - NEWSYN

NMA CHARGIN MAH LAZER

| can take down every website even If DDoS protected.
Price start from 200 5 USD 24 hours.
AVAILAILE : Frew I misutes demonstration of attack,

1 accept LBERTYRESERVE ONLY.

helg'\/d Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

o Scole Tt Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

".ch" survives DDoS attack unscathed

January 10, 2013 / Roland Eugster

Since this morning (Thursday) all the Swiss name servers have been NN |

systematically abused in a bid to stop other websites from operating. \ (| *i \' Wik

"Distributed Denial of Service (DDoS)" attacks are nothing new, but |' ‘ '
11,

this is the first time that the .ch infrastructure has been abused.
Thanks to the high-quality operation of Switzerland's Internet by the l ‘

SWITCH Foundation and SWITCH's rapid intervention, all .ch websites PR T P A e T O S
have remained accessible all the time.

Since 04:00 this morning, all the ".ch®™ name servers have been attacked by meaningless queries with an
intensity that is many times that of the normal network load. The .ch zone has not been the object of the
attack but just the means to the end. In abusing the Swiss name servers, the attackers are attempting to
prevent various websites in the USA from operating and are setting out to cause damage their operators.

Stable operation guaranteed

The attack - a standard "Distributed Denial of Service" attack - could have had far-reaching effects had there
not been sufficient security precautions in place: if all the name servers are blocked, then no .ch websites can
be accessed. Thanks to the rapid intervention of SWITCH's security team, It proved possible to defuse the
situation. "We were prepared for such an emergency and were able to activate the necessary filters straight
away and thus block the malicious traffic", explains Daniel Stirnimann who is responsible for the name server
infrastructure. Since then, the load has been running at the normal level again, even though the attack is still

ongoing.
N";OWA NM@O’WD . :
4 L) Big ropies
FENE B
"= QoS &
A :-:mj 4 [—‘
o N
o - Pt :: !
55589 O
3333 i
nfected chents (botnet) Deterioraton of sernoe for reguiar chorts el
compile Quares
Source: http: //www.switch.ch/about/news/2013/ddos.html
hei 8-Vd Hes so Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

:’w(':nll;g‘tc- :“’x;"« et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

http://www.switch.ch/about/news/2013/ddos.html
http://www.switch.ch/about/news/2013/ddos.html

Name server A Name server B

< -
i 2 A
b [: A . .
pr— [Ny Big replies
Small o Y
quores L Legitimate =< i 1
=4 queries/ >
LS [><] replies 2 ==
=4 2<
¥ -
\ J‘ \\\
> ":. //’\/4 &
/ \
Object of the
. o . , DDOS attack
Infected clients (botnet) Deterioration of service for regular clients
compile queries

Source: http://www.switch.ch/about/news/2013/ddos.html

hei 8-Vd Hes so Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole & kgénierse et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

http://www.switch.ch/about/news/2013/ddos.html
http://www.switch.ch/about/news/2013/ddos.html

17500

15000

12500

10000

7500

5000

2500

3:00 3:30 6:00 6:30
© 2013 SWITCH

Source: http://www.switch.ch/about/news /2013 /ddos.html

heig'Vd Hes SO Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Haute Ecole & ingénierse et de Gessor : Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)
du Canton de Vaud .

http://www.switch.ch/about/news/2013/ddos.html
http://www.switch.ch/about/news/2013/ddos.html

Complexity Attacks

Pascal Junod, «Playing hide-and-seek with Hash-DoS»

heig-vd Hes
e ol Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Complexity Attacks

fhrack Magazine Volume 8, Issue 53 July 8, 1998, article 13 of 15

------------------------- [Designing and Attacking Port Scan Detection Tools
-------- [solar designer <solaréfalse.com>

-===[Introduction

The purpose of this article is to show potential problems with intrusion
detection systems (IDS), concentrating on one simple attack: port scans.

This lets me cover all components of such a simplified IDS. Also, unlike
the great SNI paper (http://www.secnet.com/papers/IDS.PS), this article
is not limited to network-based tools. In fact, the simple and hopefully
reliable example port scan detection tool ("scanlogd") that you'll find
at the end is host-based.

nei g-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole & ngénierie et de Gessol Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

-=-==[Data Structures and Algorithm Choice

wWhen choosing a sorting or data lookup algorithm to be used for a normal
application, people are usually optimizing the typical case. However, for
IDS the worst case scenario should always be considered: an attacker can
supply our IDS with whatever data she likes. If the IDS is fail-open, she
would then be able to bypass it, and if it's fail-close, she could cause

a DoS for the entire protected system.

~

Let me illustrate this by an example. In scanlogd, I'm using a hash table
to lookup source addresses. This works very well for the typical case as
long as the hash table is large enough (since the number of addresses we
keep is limited anyway). The average lookup time is better than that of a |
binary search. However, an attacker can choose her addresses (most likely
spoofed) to cause hash collisions, effectively replacing the hash table
lookup with a linear search. Depending on how many entries we keep, this
might make scanlogd not be able to pick new packets up in time. This will
also always take more CPU time from other processes in a host-based IDS

_ like scanlogd.)

T ve solved this problem by limiting the number of hash COlllSlonS, aﬂd

P [P SR, [P R T S P B, . PR WP W AL o ——) SR N ——— e ol e e AL o

’iet me illustrate thlS by an example. 1In scanlogd i m using a hash tabl
to lookup source addresses. This works very well for the typical case as
long as the hash table is large enough (since the number of addresses we

keep is limited anyway). The average lookup time is better than that of

spoofed) to cause hash collisions, effectively replacing the hash table
lookup with a linear search. Depending on how many entries we keep, this
might make scanlogd not be able to pick new packets up in time. This wil
also always take more CPU time from other processes in a host-based IDS
1like scanlogd.

\

binary search. However, an attacker can choose her addresses (most likely

e

a

1

J

more research might be needed.

heig-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole @ingenierie €t de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

Complexity Attacks

~Denial of Service via Algorithmic Complexity Attacks

Scott A. Crosby

scrosby@cs rice.edu

We present a new class of low-bandwidth denial of
service attacks that exploit algorithmic deficiencies
in many common applications’ data structures. Fre-
quently used data structures have “average-case”
expected running time that’s far more efficient than
the worst case. For example, both binary trees and
hash tables can degenerate to linked lists with care-
fully chosen input. We show how an auacker can
effectively compute such input, and we demonstrate
attacks against the hash table implementations in
two versions of Perl, the Squid web proxy, and the
Bro intrusion detection system. Using bandwidth
less than a typical dialup modem, we can bring a
dedicated Bro server to its knees; after six min-
utes of carefully chosen packets, our Bro server was
dropping as much as 71% of its traffic and consum-
ing all of its CPU. We show how modern universal
hashing techniques can yield performance compa-
rable to commonplace hash functions while being
provably secure against these attacks.

Dan S. Wallach
dwallach@cs rice edu

Department of Computer Science, Rice University

sume O(n) time to insert n elements. However, if
each element hashes to the same bucket, the hash
table will also degenerate to a linked list, and it will
take O(n?) time to insert n elements.

While balanced tree algorithms, such as red-black
trees [11], AVL trees [1], and treaps [17] can avoid
predictable input which causes worst-case behav-
ior, and universal hash functions [S] can be used
to make hash functions that are not predictable by
an attacker, many common applications use simpler
algorithms. If an attacker can control and predict
the inputs being used by these algorithms, then the
attacker may be able to induce the worst-case exe-
cution time, effectively causing a denial-of-service
(DoS) attack.

Such algorithmic DoS attacks have much in com-
mon with other low-bandwidth DoS attacks, such as
stack smashing (2] or the ping-of-death ', wherein a
relatively short message causes an Internet server to
crash or misbechave. While a varicty of techniques
can be used to address these DoS attacks, com-
mon industrial practice still allows bugs like these

e cmmccm e ccmccmcccatal e At VWi e | 33 RN

heig-vd Hes

Haute Ecole @ ngéniere et de Gestor
du Canton de Vaud

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Complexity Attacks

Platforms

Alexander “alech” Klink Julian “zeri” Walde
n.runs AG TU Darmstadt

#hashDoS

December 28", 2011. 28" Chaos Communication Congress. Berlin, Germany.

heig-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecoe g ginierie ¢t de Gesso Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Coplex1ty Attacks

@O
@@ash flooding DoS reloaded:

l..
\ attacks and defenses

Jean-Philippe Aumasson, Kudelski Group
Daniel J. Bernstein, University of lllinois at Chicago

Martin Bol3let, freelancer

nei g-\/d Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole & iagénierse et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Complexity Attacks

7
~,

ash-flooding DoS reloaded:
attacks and defenses

Jean-Philippe Aumasson,
Kudelski Security (NAGRA)

D. J. Bernstein,

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Martin BoBlet,
Ruby Core Team

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

heig-vd Hes
Haute Ecole dingénierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

neig-vo
Haute Ecole ¢ »

((,

g

Example: Binary Tree

7

y 4

Hes

VA

Z

N

3

v

y P’
, '
/
16
2

insert()

find()

X /og »)

/ N\

5

7
/ "\
8 9

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Example: Binary Tree

Mg insert ()

O)

4 find()

A »)

heig-vd Hes
Haute Ecole Gingénierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Example: Hash Table

[01 [1] [2] [

1 [4]1 [5] [6])
\’ \
6 4

~J

Ol

W
e« W
O <N«

(insert () 0 @)

4
y4

uint8 t hash (uint32 t e) flnd()

A e
4 Y O

{

return (e*3) % 7;

}

nel 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole Gingenierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Example: Hash Table

[01 [1] [21 [3] [4]1 [5]1 [6])
v

6
\

13
\
20
\

2¢7 insert ()| On

uint8_t hash (uint32_t e) 34 find() O »)
A { Y

return (e*3) % 7; 41
} \/
48
Ne Hes *

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Eogi'hack 2013, March 22nd, 2013, Geneva (Switzerland)

Hash DoS

ne 2-VO Hes Pascal Junod, «Playing hide-and-seek with Hash-DoS»

Haute Ecole @ kngenierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Multi-collisions

» Goal of a Hash-DoS: trigger the worst-
case !

» In order to do it, one must find multi-
collisions on the hash function, i.e.,
inputs xi, Xz, X3, ..., Xn such that H(xz) =
H(xz) = H(x3) = ... H(xn)

» Most simple hash functions allow this
easily.

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Randomization

» A possible counter-measure consists in
randomizing the hash function, keeping
secret the random parameter.

» Not all hash functions and constructions
are OK...

» For instance, look at h := H(x)+r, where r
is the random value and where multi-
collisions on H{.) are easy to find.

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Better solution

» Use a data structure that has good worst
case complexities, like red-black trees.

» Performance loss vs. security loss
Red-black tree

From Wikipedia, the free encyclopedia . (\
Lot Red-black tree
Q This article needs additional citations for verification. Please help improve this Lo Tvpe Tree
article by adding citations to reliable sources. Unsourced material may be challenged | . °° ypP
N A (0D A L Invented 1972

A red-black tree is a type of self-balancing binary search tree, a data structure (Red-black tree \ Invented by Rudolf Bayer
used in computer science, Type Tree
The self-balancing is provided by painting each node with one of two colors (these | Invented 1972 Time complexity
are typically called red' and black’, hence the name of the trees) in such a way Iinvented by Rudol Bayer in blg O notation
that the resulting painted tree satisfies certain properties that dont allow it to Time complexity o e N
become significantly unbalanced. When the tree is modified, the new tree is in big O notation Average, {f st case o
subsequently rearranged and repainted to restore the coloring properties. The Average Worst case ? 3 ‘
properties are designed in such a way that this rearranging and recoloring can be Space o(n) O(n) Space O(n)] o
performed efficiently. Search ol O(log n) .

: _ N _ B Search O(log n) &
The balancing of the tree is not perfect but it is good enough to allow it to Insert Ofbgn) Ofbgn) . 1
guarantee searching in O(log n) time, where n is the total number of elements in \oom. O(lbgn) O(bgn)) Insert O(Iog n) “'. g
the tree. The insertion, and deletion operations, along with the tree rearrangement O R)
and recoloring are also performed in O(log n) time. " Tt . \Delete O(log n)
Tracking the color of each node requires only 1 bit of information per node because there are only two colors. The tree does not o
contain any other data specific to its being a red-black tree so its memory footprint is almost identical to classic (uncolored)
binary search tree. In many cases the additional bit of information can be stored at no additional memory cost.

he|g-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Haute Ecole & ngéniers et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

Example: nginx
» HTTP server / reverse proxy
» Written by Igor Sysoev since 2002

» High performances, low CPU/memory footprint
compared to competitors

Web server developers: Market share of all sites

B Apache
l IETCMFT B Microsoft
K M Sun
B Google
mars 2013 B NCSA
40% 2

m Microsoft: 18%

Apache: 54% B Other
R
L M Sun: 0%
20% RQ/\\/:{\NN ® nginx: 14% 7
G m Google: 4% \/’
= NCSA: 0% :jﬁ
‘ S m Other: 11%

0%
%gb \90-'6 \991 \Qgg fLQOQ rLQQ\ Q,GQ':' @00’5 fLQp} 7906 @06" fLQp% 'LQQ? %0\0 @0\\ fLQ\’b

A
RN NS NG T AP g P PR a3
oV o T @ b P o M gt @ittt P 0 oot e

o/ HeS

| 8-VO Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Examples: nginx

» All data coming from
are stored in hash tables

» Very efficient, but not secure

#define ngx_hash(key, c¢) ((ngx_uint_t) key * 31 + c)

» All data coming from outside are stored
in red-black trees.

» A bit less efficient, but mastered worst-

o
case o " e
o o o o

H “ pEao aag P
€s a a. o cach & Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

BTRFS

ne 2-VO Hes Pascal Junod, «Playing hide-and-seek with Hash-DoS»

Haute Ecole @ kngenierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

BTRFS

» According to Wikipedia, the «B-tree file

system» is a GPL-licensed experimental
file-system for Linux.

» Several interesting features a la ZFS

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole ¢'hg ' ' Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

BTRFS

As of Linux 3.6 (released 30 September 2012), Btris implements: 223!

Features

¢ Online defragmentation

« Online volume growth and shrinking

¢ Online block device addition and removal

« Online balancing (movement of objects between block devices to balance load)

¢ Offline filesystem check

¢ Online data scrubbing for finding errors and automatically fixing them for files with redundant copies

 RAIDO, RAID1, and RAID10

« Subvolumes (one or more separately mountable flesystem roots within each physical partition)

« Transparent compression (zlib and LZO)

« Snapshots (read-only'** or copy-on-write clones of subvolumes)

« File cloning (copy-on-write on individual files, or byte ranges thereof)

 Checksums on data and metadata (CRC-32C'*%)

¢ In-place conversion (with rolback) from ext3/4 to Bris'%®

« File system seeding®’ (Btrfs on read-only storage used as a copy-on-write backing for a writeable Btrfs)

« Block discard support (reclaims space on some virtualized setups and improves wear leveling on SSDs with TRIM)
« Sendireceive (saving diffs between snapshots to a binary stream)'*®

« Hierarchical per-subvolume quotas”
Planned features include:

« Online filesystem chack™)
« Very tast offline filesystem checkl|oton needed
« Parity-based RAID (RAID5 and RAIDE)"”
« Object-level RAIDO, RAID1, and RAID10!ca%on neaded]
o Incremental dumps!&aton needed]
« Ability to handle swap files and swap partitions™ "
e Data deduplication!*%2
e Encryption‘41]
Source: http://en.wikipedia.org/wiki/Btrfs#Features

heig-Vd Hes so Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

:’w(':nll;g‘tc- :“’x;"« et de Gessol Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

BTRFS

SUSE Linux Says Btrfs is Ready to Rock

Exclusive
a7 g +1) 71 @ share | @ Submit

The advanced Butter/Better/B-tree Filesystem, Btrfs, is still labeled as experimental in the Birfs Wikl and on
Oracle's Bir's page, though the Oracie page looks outdated. Btrfs is an advanced copy-on-write filesystem
with a lot of great capabilities: snapshotting and rolibacks, checksumming of data and metadata, RAID,
volumes and subvolumes, online defragmentation, compression, and online filesystem chack and repair.
Snapshots are always interesting to me; they're not backups, but a fast way to restore a system 1o a
previous state. With Birfs users can manage their own snapshots in their home directories. Birfs supports
filesystems up to 16 EiB in size, and files up to 16 EiB as well. (Which may be almost enough to store all the
cute kitten photos on the Internet.)

. - . b B aria Sobrn - a
. 2Co De ’ d Ou 0

.j’mme 49 -!Mot

Most distros include Btrfs, and Btrfs
has been included in mainline Linux
kemels since the 2,6.29 kernel. To
use It just install the user-space 100ls.
So what's the story, is it ready for
prime time <(

Btrfs is *

; XFS and OCFS2 (Oracle cluster
« flesystem for Linux).

e e e e

The idea behind supporting multiple
filesystems is 10 enable customers to choose different filesystems for different workloads. The installation
default is good old tried-and-true Ext3. In the release notes SUSE recommends XFS for data, and Btrfs for
root filesystems.

Source: http://www.linux.com/news/enterprise/systems-management/677226-suse-linux-says-btrfs-is-ready-to-rock

Haute Ecole & ingéniere et de Gessor
du Canton de Vaud

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

http://www.linux.com/news/enterprise/systems-management/677226-suse-linux-says-btrfs-is-ready-to-rock
http://www.linux.com/news/enterprise/systems-management/677226-suse-linux-says-btrfs-is-ready-to-rock

BTREFS Directory
Entry

Directories

Directories are indexed in two different ways. For filename lookup, there is an index comprised of keys:

Directory Objectid [BTRFS_DIR_ITEM_KEY (64 bit flename hash

= — . —s——— —— ————

"The default directory hash used is crc32c, although other hashes may be added later on. A flags field in the super block will indicate which hash is used for a given
- FS. : - S _

—= — e @ = = = — = B S —

The second directory index is used by readdir to return data in inode number order. This more closely resembles the order of blocks on disk and generally provides
better performance for reading data in bulk (backups, copies, etc). Also, it allows fast checking that a given inode is linked into a directory when verifying inode link
counts. This index uses an additional set of keys:

Directory Objectid |BTRFS_DIR_INDEX_KEY |Inode Sequence number

The inode sequence number comes from the directory. It is increased each time a new file or directory is added.

Source: https://btrfs.wiki.kernel.org/index.php/Btrfs design

nei g'\/d Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole & ngénierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

https://btrfs.wiki.kernel.org/index.php/Btrfs_design
https://btrfs.wiki.kernel.org/index.php/Btrfs_design

<math-nerd-session>

=

o la) ¢ (A6 (o +)— Lr& V) 4~}A(@J 5(6(B
o> AN >O()C @\4- CQ\jAGC(}\ f}
5b((ir a (\,ﬁ*ng 7 (“) C(7(0k +) Ldé(q)-ﬁ»‘_,l.(a)]

— A] e gf/ W‘ . 04 - CAé(O“+) [—réfr(a)
B o (g))</ (;CL@#
: l ‘6)3 .=]—’\(CL) I-—a_ L) W ’T"(aé (0\)

%G’O-

OS5 +62 = [)\ (o\ 7&')1—%, (;)%’A(&)_J \KA

fﬁf 526 . (af)= L5 (a)+ B, a\ﬂuﬁa\j |
A + QDU - 5, (0 ou (LX) + b () C@(g« | (G)] :

YA 8o

e lat) 06C +OEL — 5 (q) - ¢] Zig@
2 GA @a) ,
~ ME N= K0> N - rA o >

s S ——————

I . x&oYTASb
\J/ggf f\xKuf \{21\)\

o ‘X /‘ n ' s)
e = ‘Cﬁ() - € 2__1 l K 2 1]
OA f\"o r‘ Trs! £
tn + | 0
—l) /@) _)

= 1 jl :
""‘“Z LnH yA

b “h /(’U“">

nei g'\/d Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Houta Bcule Flagialerts ot do Sentn Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

CRC32cC

» Cyclic Redundancy Check (CRC)
» Linear error-detecting code
» Non-cryptographic!
» (Multi-)collisions are easy to find

» Pre-images are easy to find

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

CRCs

» Easily said: CRC(x) is the remainder of
the division of x interpreted as a
polynomial over GF(2) by the generator
polynomial.

» Example:

» x=0x77,G(x) =x*+x+1

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

CRCs

» 0x77 <=>0b01110111

» 0b01110111 <=>Xx0+x°+x*+x%+x+1 Kemainder

/

XO+x0+x X%+ x+1 = (x*+x+1) (X2 +x+1)+x3+x% 4%

/ T

Generator polynomial Quotient, Lhat we +orget

» CRC4(0x77) = OXE

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

CRCs & Multi-Collisions

XO+x0+x*+x2+x+1 = (xH+x+1) (0% +x+1)+x3+x% 4%
xt+x3+x%+1 = (xt+x+1) 1+x3+x%+x
x°+x3 = (x*+x+1)x+x3+x%+x
XP+xH+x3+x+1= (x*+x+1) (x+1)+x3+x°+x

» CRC4(0x77)
CRC4 (0x48)

CRC4 (0x1D)
CRC4 (0x3B) = OXE

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

neig-vo

o la) ¢ CA6(0+) Lr‘éc V) 4—};&(&)3 5(4(
e (a)+ Ca\jAGCO\ 765
() C(‘J(A +)- [_65(«)-&}/&“)]

=\ 7 Wiz gf/g i = O @K CAé(O“+) [—réfr(a)
))</W O > b4 (a)TC

Al Dt ARl S0
ot6 + Bt = N (o)L 57 () + T, a\-{-'u(a\j

5}9((.» < (\,ﬁ*ng 7

5

-, \'—"l (o (,

- z;‘"]-’\(&)l- a_L)

o2 468 =

6o
ok —G®

U+ ODU -~ &, (W 9U (o) 4 6 () C@C?
CS(, Q) ((

9% g 96C +©EL —
: -
axbtowﬂ GA ——

#’MEN" Ko)— N - A O &

S
y

I . x&oYTASb
\J/ggf f\xKuf \{21\)\

) 7 n:o i

ll"

Tl
B RE S 52 |
iy oSl A2 > SRl H

LnH yAa
N “)

D)

</math- nerd session>

Hes

=

g i

1 /O =

(;Ctay&

S5

u(a)]-

<P
(o)

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Back to BTRS

» Idea: let’s fill a directory with files whose
names collide under CRC32c, and let’s
see what happens !

» Demo time

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Results

» You can easily fill a bucket (dedicated
CRC32c value), and BTRFS will allow you

to create only a very limited number of
files whose names collide under CRC32c

» You can also easily DoS the bash
command line expansion mechanism ;-) !

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Results

De Chris Mason W
Suiet Re: [btrfs] security hole disclosure

Pour Pascal JUNOD W

Copie 4 Chris Mason W
Hi Pascal,

First, thanks for contacting me and for the time you've spent looking at
Btrfs.

e —
e e —

EXt3's tea hash 1 a littie more involved but
the same kinds of collision based DOS attacks. Other 32bit hashes do
work better, but even though they are much more CPU intensive, it is

still possible to DOS them.

64 bit hashes would be better, but the application interfaces
(readdir,seekdir,telldir) on 32 bit machines don't work well with 64 bit
directory offsets. Btrfs is able to get around this at least, we return
something other than the hash from readdir.

We could make your exploit more complex by salting the hash, but I've
always thought the 32 bit hashes were weak enough that salting alone
wasn't a huge benefit. If you have any input there I'm very interested

in hearing it.

The impact of the DOS is that a mali
" creation of specific file names. For this to impact other users on the
system, it must be done in directories where both the malicious user and |
the victim user have permission to create files.

heig-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole @ingenierie €t de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

Results

* CO Channels ~

Denial-of-Service Attack Found In Btrfs File-System

Slashdeot

stories

submissions

Posted by timothy on Friday December 14, @09:24PM W
popular from the at-that-range-a-hammer-works-too dept.

blo :
9 An anonymous reader writes

“It's been found that the Btrfs file-system is vulnerable to a Hash-DOS attack, a denial-of-service

ask slashdot i RS
attack caused by hash collisions within the file-system. Two DOS attack vectors were uncovered

book reviews by Pascal Junod that he described as causing astonishing and unexpected success. It's hoped

— that the security vulnerability will be fixed for the next Linux kernel release.”

The article points out that these exploits require local access.
idle

Ravi on 14 Dec 2012 at 17:14

I'WIW, I ran 'exploxts.py on EXT4, XI‘S anc BTRFS formattcd partmon and had no* issues in removmg th ﬁles n one
trial run with hash=True and ITERATIONS=1000 (i.e.55000 files) , I even got more files on BTRFS (54268) than on

EXT4.Removing them took less 5 seconds. All this was done on a openSUSE 12.1 machine.

perhay DS due to the Bash expansion of thc -

s et = i e e —

. T rcmovmg

As for the mﬁmte loop theory. -f*' seems to stall in your case

Source: http://linux.slashdot.org/story/12/12/15/0055217/denial-of-service-attack-found-in-btrfs-file-system

heig-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole @ingénierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

http://linux.slashdot.org/story/12/12/15/0055217/denial-of-service-attack-found-in-btrfs-file-system
http://linux.slashdot.org/story/12/12/15/0055217/denial-of-service-attack-found-in-btrfs-file-system

Results

D¢ Chris Mason W
Suiet Re: [brrfs) looping
Pour Moi <pascal@junod.info> %
Copie a Chris Mason W

Hi Pascal,

crc overflow handling have made us not deal with our EOVERFLOW error
handling completely right, and there are cases where we force the FS
readonly when we shouldn't.

' So this is a valid bug, I'm just waiting on some review of my fix, which
will get backported to a number of kernels.

= e e e

On Sat, Dec 15, 2012 at 04:49:02AM -0700, Pascal Junod wrote:
Hi Chris,

| have good news for you.

Some people have noticed (in the comments of my blog post) that the CPU
Is burnt in userland, and not in kernel, a detail that | had

unfortunately missed. Some have suggested that actually, btrfs was not
looping, but that it was the expansion code of bash. As | generate

random filenames, it is likely to have a * or a ? character, and then

trigger a complexity attack on the bash command line expansion code,
even before going into kernel code.

stracing the rm command has not given anything as output, but | just
tried to run my python code on another file-system (ext4), and it loops
as well. Argh !

Implementing another way to remove the files (with help of find and
xargs feeding rm), | observed an average performance loss of about 10%,
which is definitely acceptable. Ironically, the DoS seems to be

prevented by the finite number of files mapping to the same key.

Anyway, the filling-bucket “attack” remains still valid, it keeps an
open question whether it must be accepted or not. | still tend to think
that it is not, as a FS should be robust in every possible situation,
including the ones that we don't think about.

heig-Vd Hes so Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

:au(!v (n(d: c\::)gmt et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache

ne 2-VO Hes Pascal Junod, «Playing hide-and-seek with Hash-DoS»

Haute Ecole @ kngenierie et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

The Apache Case

heig-vd Hes

pjunod@fedora:~/software/httpd-2.4.3
File Edit View Search Terminal Help

(pjunod@fedora httpd-2.4.3]% pwd
/home/pjunod/software/httpd-2.4.3

“ Jw;ﬂpd@fodora httpd-2.4.3]% find . -type f -name "*.c" -exec grep hash {} \; | wc -1

d@fedora httpd-2.4.3]% l

» Unfortunately, as for nginx, most of the
hash tables used in Apache are fed with
data coming from configuration files :-(

» Still, one can play a bit !

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

The Apache Case

pjunod@fedora:~/software/httpd-2.4.3/modules/aaa

File Edit View Search Terminal Help
#define DFLT_NONCE_LIFE apr_time_from_sec(300)

#define Hf—jAITﬁ"II'-J"‘.:’_[ZI:’l TA apr_time_from_sec(30)

#define NONCE_TIME LEN (((flapr_time _t)+2)/3)*4)

#define NONCE HASH LEN (2*APR SHAl1 DIGESTSIZE)

#define NONCE_LEN (int) (NONCE_TIME LEN + NONCE_HASH_LEN)
#define SECRET LEN 20

/%

client list definitions

typedef struct hash_entry { : T B \
unsigned long key; /* the key for this entry */ ‘
struct hash_entry *next; /* next entry in the bucket */
unsigned long nonce_count; /¥ for nonce-count checking */ ,Ll
chat hal[2*APR_MD5 DIGESTSIZE+1]; /* for algorithm=MD5-sess */ I
char last_nonce[NONCE_LEN+1]); /* for one-time nonce's o &
} client_entry; 3
static struct hash table { ‘
client_entry **table; "
unsigned long tbl len; '
Jnsigned long num_entries; ‘ ",‘
unsigned long num_created;
unsigned long num_removed; |
Jnsigned long num_renewed; |
}"c_l ient_list; 7 7 - - 4
nei g-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole & iagéniers et de Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

du Canton de Vaud

MD5-sess

» So it seems that Apache uses a hash table
(stored in a shared memory segment) to
store data related to the MD5-sess
digest authentication mechanism.

» Whatis MD5-sess ?! Only heard about
MD5 digest authentication...

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

MD5-sess

Overview [edit]

Digest access authentication was originally specified by RFC 2069 & (An Extension to HTTP: Digest Access Authentication). RFC 2069 7 specifies roughly a traditional digest
authentication scheme with security maintained by a server-generated nonce value. The authentication response is formed as follows (where HA1, HA2, A1, A2 are names of
string variables):

HA1 = MD5 (Al) = MD5 (username: realm : password)
HA2 = MD5 (A2) — MD5 (method : digest.URI)
response = MD5 (HAl : nonce : HA2)

RFC 2069 & was later replaced by RFC 2617 & (HTTP Authentication: Basic and Digest Access Authentication). RFC 2617 & introduced a number of optional security
enhancements to digest authentication; "quality of protection” (qop), nonce counter incremented by client, and a client-generated random nonce. These enhancements are
designed 1o protect against, for example, chosen-plaintext attack cryptanalysis.

If the algorithm directive's value is "MDS" or unspecified, then HA1 is

HA1= MD5(A1l

—u——

If the algorithm directive's value is "MD5-sess”, then HA1 is

! HA1 = MD5 (Al) = MD5 (I\'IDS(username : realm : passuord) : nonce : cnon(‘e))

If the qop direclive's value 18 *aulh" of 1§ Unspecified, then HA2 1
HA2 = MD5 (A2) — MD5 (method : digestURl)
If the qop directive's value is “auth-nt", then HA2 is
HA2 = MD5 (A2) — MD5 (met.hod . digestURI : .-*IDS(entityBody))
If the qop directive's value is "auth" or "auth-int*, then compute the response as follows:
response = M DS(HAT1 : nonce : nonceCount : clientNonce : qop : HAQ)
If the qop directive is unspecified, then compute the response as follows:
response = MDS(HA] : nonce : HA2)

The above shows that when qop is not specified, the simpler RFC 2069 ¢ standard is followed.

hei 8'Vd Hes so Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

dum(,:ncl:f; Ghgeniere et e Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

MD5-sess

If the "algorithm" directive's value is "MD5-sess", then Al is
calculated only once - on the first request by the client following
receipt of a WWW-Authenticate challenge from the server. It uses the
server nonce from that challenge, and the first client nonce value to

construct Al as follows:

Al = H(ung(username-value) ":" unqg(realm-value)

:" passwd)
":" ung(nonce-value) ":" ung(cnonce-value)

This creates a 'session key' for the authentication of subsequent |
requests and responses which is different for each "authentication

session", thus limiting the amount of material hashed with any one w
key. (Note: see further discussion of the authentication session in |
section 3.3.) Because the server need only use the hash of the user |
credentials in order to create the Al value, this construction could)
be used in conjunction with a third party authentication service so :
that the web server would not need the actual password value. The |
specification of such a protocol is beyond the scope of this |

I
specification. 4/
. —

=

Hes

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

e 00 \mod_auth_digest - Apach X

\\ \

& - C [httpd.apache.org/docs) /mod/mod_auth_digest.html

Sl AuthDigestAlgorithm Directive

Description: Selects the algorithm used to calculate the challenge and response hashes in digest authentication

Syntax: AuthDigestiAlgorithm MDS5|MDS-sess
Default: AuthDigestAlgorithm MDS

Context: directory, .htaccess
Ovemride: AuthConfig

Status: Extension
Module: mod_auth_digest

The AuthDigestAlgorithm directive selects the algorithm used to calculate the challenge and response hashes.

BN AuthDigestAlgorithm Directive

Description: Selects the algorithm used to calculate the challenge and response hases in digest authentication

Syntax: AuthDigestAlgorithm MDS|MDS-sess
Default: AuthDigestAlgorithm MDS5

Context: directory, .htaccess
Override: AuthConfig

Status: Experimental
Module: mod_auth_digest

The authDigestAlgorithm directive selects the algorithm used to calculate the challenge and response hashes.

heig-vd

ot Ecle e et 0 G Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

[pjunod@fedora aaal$S pwd
/home/pjunod/local/httpd/htdocs/aaa
[pjunod@fedora aaa]$S cat .htaccess
AuthType Digest

AuthDigestAlgorithm MD5-sess
AuthName "test"”

AuthDigestProvider file
AuthUserFile /home/pjunod/local/httpd/htdocs/
aaa/.htpasswd
AuthDigestNonceLifetime 0

Requilire user pjunod

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

[pJunod@fedora aaa]$ telnet localhost 80
Trying 127.0.0.1...

Connected to localhost.

Escape character is '7]"'.

GET /aaa HTTP/1.0

HTTP/1.1 500 Internal Server Error

Date: Thu, 21 Mar 2013 14:25:58 GMT

Server: Apache/2.4.3 (Unix)

Content-Length: 528

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>500 Internal Server Error</title>
</head><body>

<hl>Internal Server Error</hl>

<p>The server encountered an internal error or
misconfiguration and was unable to complete

your request.</p>

<p>Please contact the server administrator at

you@example.com to inform them of the time this error occurred,

and the actions you performed just before this error.</p>
<p>More information about this error may be available

in the server error log.</p>
</body></html>

Connection closed by foreign host.
neig-vd Hes

H [

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

mailto:you@example.com
mailto:you@example.com

Apache & MD5-sess

[pJjunod@fedora aaal$ tail -nl ~/local/httpd/logs/error log

[Thu Mar 21 15:25:59.858082 2013] [core:alert] [pid 23526:tid
139779710646016] [client 127.0.0.1:59616] /home/pjunod/local/httpd/

htdocs/aaa‘ htaccessl_ﬁ D:gfstAlgorlthm ERROR: algorithm “MD5-

sess 4

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Hes

neig-vo
Maute Lcoke

neig-vo

du Canton ud

Apache & MD5-sess

e

/4 SZ(/‘/ nﬁ Of
dat a

Z‘/7<9 Selrve,r

Zhat

contans a

ref erencCe

fQor Zvﬁe

Se,can‘fy
ConZ‘eXf

¢hat /s

Ae/nﬁ

c;oecy7[2ai é%/ *
st

{

eCFfC&é/ﬁSV%saﬂ

de Vau

}
Hes

<Aq$ Opaque and hash-table management

Generate a new client entry, add it to the list, and return the
ontry. Returns NULL if failed.

ﬂtl' client _entry *gen client(const request rec *r)

unsigned long op;
client _entry new entry = { 0, NULL, O, "", "" }, *entry;

it (lopaque cntr) {
return NULL;
1

apr_global mutex lock(opaque lock) ;
op = (*opaque cntr)++;
apr_global mutex unlock(opaque lock) ;

it (!(entry = add client(op, &new entry, r->server))) {
ap_log_rerror(APLOG_MARK, APLOG ERR, 0, r, APLOGNO (CEELE)
"failed to allocate client entry - ignoring client");
return NULL;

}

return entry,;

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

static void note digest auth failure(request rec *r,
const digest config rec *conf,
digest header rec *resp, int stale)

/* Setup opaque */

(resp-=opaque == NULL) B{
/* new client */
((conf >chock nc
| | LQ0r Ll
&& (rasp Sctient = geﬁ clien
opaque = ltox(r-=>pool, resp- >c11ont ->key) ;

conf >nonca llfotlmo == O

= a— e

{ nn

opaque = ; /* opaque not needed */

h@l 5 ’C Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Haute Ecole @ ingénierie ¢t de Gestor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

» In summary:
» Craftan HTTP query with

» an Authorization field of type
Digest MD5

» no opaque directive

» aAuthDigestNoncelLifetime 0
directive server-side

» and let's see what happens !

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

[Fri Mar 22 19:16:25.832503 2013] [core:notice] [pid
23524:tid 139779852523264] AH00052: child pid 29275 exit
signal Floating point exception (8)

[Fri Mar 22 19:16:25.832554 2013] [core:notice] [pid
23524 :tid 139779852523264] AH00052: child pid 29276 exit
signal Floating point exception (8)

[Fri Mar 22 19:16:25.832561 2013] [core:notice] [pid
23524:tid 139779852523264] AH00052: child pid 29277 exit
signal Floating point exception (8)

[Fri Mar 22 19:16:25.832568 2013] [core:notice] [pid
23524 :tid 139779852523264] AH00052: child pid 29278 exit
signal Floating point exception (8)

Hes

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

» In other words, any user can sabotage an
Apache installation in a shared web
environment

» Possibly, this can be transformed in a
remote-only attack if one is able to
upload an . htaccess filein a way or in
another.

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Apache & MD5-sess

Mark) Cox® {_ M

Re: security hole disclosure

Pascal JUNODW
Apache Software Foundation HTTP Server Projecti®

[resent, was missing cc]

—> | apologise for the delay in responding to you; we give priority to
— critical and important issues and so lower severity issues and bugs
tend to keep getting pushed to the bottom of the pile. In general we
>z//<—°— 5@/5 would not treat an issue like this as a security threat; it requires a
A ‘5 local malicious user; and if your local attacker can craft a .htaccess
! a file then there are likely many other ways they could do so which
Ad/?dhd could cause an Apache DoS. the next step would be to send this as a
bug report (or to httpd-dev) for discussion.
attack <
Regards, Mark
On Wed, Dec 5, 2012 at 1:37 PM, Pascal Junod <pascal.junod@heig-vd.ch> wrote:
Dear Apache security team,
nel g-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

-~

It’s an injustice! It is!

nei g-Vd Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
§ ngtniere et d¢ Gessor Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Haute Ecole ¢

Apache & MD5-sess

» Still, there is a morale attached to this
story:

» When you have unused code in your
project, don't compile it !

ne 2-VO Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Iski
(1969-2013)

Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»
\ Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

Contact

http://crypto.junod.info
pascal@junod.info

@cryptopathe

Hes Pascal Junod, «Playing Hide-and-Seek with Hash-DoS»

Insomni’hack 2013, March 22nd, 2013, Geneva (Switzerland)

mailto:pascal@junod.info
mailto:pascal@junod.info

