eliminaries The New Scheme Security & Performances Practical Aspects

Ciphertext-Policy Attribute-Based Broadcast Encryption with Small Keys

Benjamin Wesolowski (EPFL) Pascal Junod (HES-SO/HEIG-VD)

This work was supported by the HES-SO and the EUREKA-Celtic+ H2B2VS project.

Plan

- 1 Preliminaries
- 2 The New Scheme
- 3 Security & Performances
- **4** Practical Aspects

Preliminaries The New Scheme Security & Performances Practical Aspect

A Typical Pay-TV Scenario

«Grant access to all receivers having rights — AND — ...»

Attribute-Based Encryption

- In practice, one can often group decrypting entities by common properties, or **attributes**:
 - «receivers located in Seoul», «receivers located in a rural zone»....
 - «receivers supporting SD», «receivers supporting HD», «receivers supporting 4K»,...
 - «receivers at patch level 3.2», «receivers at patch level 3.3»,...
- Idea of attribute-based encryption (ABE) proposed by Sahai and Waters (Eurocrypt'05) as a generalization of identity-based encryption.
- Roughly: give (individualized) attributes to receivers, and describe which receivers can decrypt a ciphertext with an **access** equation \mathbb{A} .

Ciphertext vs. Key Policy ABE

ciphertext.

■ Ciphertext policy: access policies are embedded into the

- **Key policy**: access policies are embedded into decryption keys.
- NB: in a Pay-TV scenario, access policies are rather dynamic (because of marketing guys), while changing decryption keys in a receiver is a very expensive operation.

Broadcast Encryption

- Concept introduced by Berkovits (Eurocrypt'91) and Fiat and Naor (Crypto'93)
- Idea: broadcast a ciphertext that only non-revoked receivers can decrypt.
- Collusion resistance: revoked receivers colluding together by sharing their decryption key material should not be able to decrypt a ciphertext as well.
- In the following of this talk:
 - Set of users (or receivers) is \mathcal{U} , with $n = |\mathcal{U}|$.
 - Set of revoked receivers is \mathcal{R} , with $\ell = |\mathcal{R}|$.
 - Broadcast encryption scheme: $n \ell \ll n$.
 - Revocation system: $\ell \ll n$.

Preliminaries The New Scheme Security & Performances Practical Aspect

Attribute-Based Broadcast Encryption (ABBE)

- In some sense, an ABE is nothing but a BE: group of allowed receivers are defined by the access equation A.
- Question: how can you **efficiently** revoke a (rogue) receiver?
- When using an ABE, dedicating a different attribute to each receivers is not efficient:
 - Public and private key size
 - Decryption time
 - Static nature of receivers
- Concept of Attribute-Based Broadcast Encryption (ABBE) proposed by Lubicz and Sirvent (Africacrypt'08)
 - ABE scheme with the additionnal functionality of revoking individual receivers in an efficient way.

Ciphertext-Policy ABBE

- Setup(λ) \rightarrow (pk, msk): randomized algorithm which takes a security parameter λ as input and outputs a public key pk and a master key msk.
- KeyGen $(u, \omega, \mathsf{msk}, \mathsf{pk}) \to \mathsf{dk}_u$: randomized algorithm that takes as input a receiver $u \in \mathcal{U}$, a set of attributes $\omega \subset \mathcal{B}$, msk and pk. It outputs a private decryption key $\mathsf{dk}_{(u,\omega)}$ for receiver u.
- Encrypt(\mathcal{R} , \mathbb{A} , pk) \to (hdr, k): randomized algorithm that takes as input a set of revoked receivers $\mathcal{R} \subset \mathcal{U}$, a Boolean access policy in CNF \mathbb{A} and pk. It outputs a header hdr and a session key k.
- Decrypt(hdr, $(\mathcal{R}, \mathbb{A})$, $dk_{(u,\omega)}$, (u,ω) , pk) \rightarrow k or \bot : algorithm taking as input a header hdr, a set of revoked receivers \mathcal{R} , an access policy \mathbb{A} , a decryption key $dk_{(u,\omega)}$ for receiver u equipped with attributes ω and pk. It outputs the session key k if and only if ω satisfies \mathbb{A} and u is not in \mathbb{R} ; otherwise, it outputs \bot .

Plan

- 1 Preliminarie
- 2 The New Scheme
- 3 Security & Performances
- **4** Practical Aspects

lliminaries The New Scheme Security & Performances Practical Aspects

Intuitive Description

- (Secure) combination of the Boneh-Gentry-Waters (Crypto'05) broadcast encryption scheme and of the Lewko-Sahai-Waters (IEEE Security & Privacy 2010) revocation system.
- Similar idea behind the Junod-Karlov (DRM'10) ABBE scheme.
- Boneh-Gentry-Waters has a PK and a DK size that depend on the number of entities in the system, and a constant-size ciphertext.
- Lewko-Sahai-Waters has a ciphertext linearly dependent on the number of revoked users, but the sizes of PK and DK are independent of the total number of users.

Setup

- Two groups \mathbb{G} and \mathbb{G}_T of prime order $p>2^\lambda$ as well as a non-degenerate bilinear pairing $e:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_T$.
- Two non-zero elements $g, h = g^{\xi} \in \mathbb{G}$ and seven random exponents $\alpha, \gamma, b, \beta, \delta, r$ and r' in $\mathbb{Z}/p\mathbb{Z}$.
- We note $g_i = g^{\alpha^i}$.
- The public key pk consists of the elements of \mathbb{G} g, $g_n^{\gamma r'}$, g^r , $g_{n+1}^{rr'}$, $g_{n+1}^{rr'}$, $g_{n+1}^{rr'}$, $g_{n+1}^{\delta r}$, g_n , $\left(g_{\imath(a)}^r\right)_{a\in\mathcal{B}^*}$, and the two elements of $\mathbb{G}_T e(g_1,g_n)^{rr'\beta\gamma}$ and $e(g_1,g_n)^{r\beta}$.

Key Generation

- Choose two random elements $\sigma_u, \varepsilon_u \in \mathbb{Z}/p\mathbb{Z}$.
- Define

$$D_{u,1} = \left(g^{b \cdot \mathrm{id}(u)} h\right)^{\sigma_u \varepsilon_u},$$

$$D_{u,2} = g^{-\sigma_u \varepsilon_u},$$

$$D_{u,3} = g_1^{r(\beta + \varepsilon_u)}.$$

$$D_{u,3} = g_1^{r(\beta+\varepsilon_u)}$$

 \blacksquare The private key of receiver u is

$$\mathsf{dk}_{\mathit{u}} = \left(\left(D_{\mathit{u},k} \right)_{k=0}^{3}, \left(g_{\imath(a)}^{\varepsilon_{\mathit{u}}} \right)_{a \in \mathcal{B}^{*}}, \left(g_{n+1+\imath(a)}^{\varepsilon_{\mathit{u}}} \right)_{a \in \mathcal{B}^{*}}, \left(g_{\imath(a)}^{\delta \varepsilon_{\mathit{u}}} \right)_{a \in \mathfrak{B}(\mathit{u})} \right).$$

Encryption

- Access policy $\mathbb{A} = \beta_1 \wedge ... \wedge \beta_N$, with $\beta_i = \beta_{i,1} \vee ... \vee \beta_{i,M_i}$
- \blacksquare a revocation set $\mathcal{R} \subset \mathcal{U}$.
- $s_0, ..., s_N \in \mathbb{Z}/p\mathbb{Z}$ at random and one defines $s = \gamma r' s_0 + \sum_{i=1}^N s_i$
- $\blacksquare C = g_n^s = \left(g_n^{\gamma \cdot r'}\right)^{s_0} g_n^{\left(\sum_{i=1}^N s_i\right)}.$
- For all i = 1, ..., N, one defines the elements $C_{i,0} = g^{rs_i}$ and

$$\mathcal{C}_{i,1} = \left(g^{r\delta}\prod_{a\ineta_i}g^r_{n+1-\imath(a)}
ight)^{s_i},$$

as well as the corresponding N parts of the header $hdr_i = (C_{i,0}, C_{i,1}).$

Encryption (2)

 \blacksquare $C_0 = g_{n+1}^{rr's_0}$, and for each $u \in \mathbb{R}$,

$$\mathcal{C}_{u,1}=g_{n+1}^{rr'bs_u}$$
 and $\mathcal{C}_{u,2}=\left(g^{b^2\mathrm{id}(u)}h^b
ight)^{lpha^{n+1}rr's_u}$.

- Let $hdr_0 = (C_0, (C_{\mu,1})_{\mu \in \mathbb{R}}, (C_{\mu,2})_{\mu \in \mathbb{R}})$ and $hdr = (C, hdr_0, ..., hdr_N).$
- The global session key k is given by

$$k = e(g_1, g_n)^{r\beta s}$$
.

Decryption (Overview)

- If $u \in \mathcal{R}$ or if there exists $i \in \{1, ..., N\}$, such that $\beta_i \cap \mathfrak{B}(u) = \emptyset$, return \bot .
- For i = 1, ..., N, choose one satisfying attribute $a \in \beta_i \cap \mathfrak{B}(u)$ and compute a $\mathsf{k}_i^{\varepsilon_u}$ value, as well as $\mathsf{k}_0^{\varepsilon_u}$ (see the paper for the complete formulas).
- $\blacksquare \mathsf{k} = \frac{e(D_{u,3},C)}{\prod_{i=0}^{N} \mathsf{k}_{i}^{\varepsilon u}} = e(g_{1},g_{n})^{r\beta s}.$

Plan

1 Preliminaries

2 The New Scheme

- 3 Security & Performances
- **4** Practical Aspects

Selective Security Model

- **Setup.** The adversary chooses a distribution of attributes $\mathfrak{B}: \mathcal{U} \to \mathcal{P}(\mathcal{B})$, declares a set of revoked receivers $\mathcal{R}^* \subset \mathcal{U}$ and an access policy \mathbb{A}^* . The challenger runs the Setup algorithm and gives the public key pk to the adversary \mathcal{A} .
- **Query phase 1.** The adversary is allowed to (adaptively) issue queries to the challenger for private keys dk_u for receivers $u \in \mathcal{U}$ such that either $u \in \mathcal{R}^*$ or $\mathfrak{B}(u)$ does not satisfy the policy \mathbb{A}^* , *i.e.*, receivers not able to decrypt a ciphertext.
- Challenge. After having run the encryption algorithm $Encrypt(\mathcal{R}^*, \mathbb{A}^*, pk)$, the challenger gets a header hdr and a session key k. Next, he draws a bit b uniformly at random, sets $k_b = k$ and picks k_{1-b} uniformly at random in the space of possible session keys. He finally gives the triple (hdr, k_0 , k_1) to the adversary.

Selective Security Model (2)

- Query phase 2. The adversary is again allowed to (adaptively) issue queries for private keys dk_u for receivers $u \in \mathcal{U}$ such that either $u \in \mathcal{R}^*$ or $\mathfrak{B}(u)$ does not satisfy the policy \mathbb{A}^* .
- **Guess.** The adversary outputs a guess bit b'.

Proofs of Security

Definition (GDHE Decisional Problem, Boneh-Boyen-Goy, Crypto'05)

Let \mathbb{G} and $\mathbb{G}_{\mathcal{T}}$ be two groups of prime order p, g a generator of \mathbb{G} , and $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$ a non-degenerate bilinear map. Let $f \in \mathbb{F}_p[X_1,...,X_n]$ be a polynomial in n variables over \mathbb{F}_p , the finite field with p elements, and $P,Q \subset \mathbb{F}_p[X_1,...,X_n]$ be two sets of polynomials, both containing 1. Choose $x_1,...,x_n \in \mathbb{F}_p$ and $U \in \mathbb{G}_{\mathcal{T}}$ uniformly at random. Given the elements

$$g^{\pi(x_1,\ldots,x_n)}$$
 and $e(g,g)^{
ho(x_1,\ldots,x_n)}$

for each $\pi \in P$ and $\rho \in Q$, the *Generalized Diffie-Hellman Exponent* (GDHE) Decisional Problem is the problem of distinguishing $e(g,g)^{f(x_1,\ldots,x_n)}$ from U.

liminaries The New Scheme Security & Performances Practical Aspect

Security Proof (1)

Lemma

If the adversary A solves the CP-ABBE selective security game with advantage ε , then a simulator can be constructed to solve the (P,Q,f)-GDHE problem with advantage ε in polynomial time, with one oracle call to A.

Security Proof (2)

Theorem

For any probabilistic algorithm $\mathcal A$ that totalizes at most q queries to the oracle performing group operations in $(\mathbb G,\mathbb G_T)$ and evaluations of $e(\cdot,\cdot)$, and declaring a set of revoked receivers of size at most η , as well as an access policy with at most N clauses $(\mathbb A=\beta_1\wedge\cdots\wedge\beta_N)$, then $\mathrm{Adv}^{\mathrm{ind}}(\lambda,\mathcal U,\mathcal B,\mathcal A)$ is smaller or equal to

$$\frac{(q+4(N+N+\eta)+22+|\mathcal{U}|(10N+8))^2(8N+3)}{2^{\lambda-1}}$$

Performances

Scheme	Acc. Struct.	pk size	dk _u size	hdr size
Attrapadung-Imai (2009)	Monotone	O(N+n)	O(N+n)	${\it O}(u)$
Lubicz-Sirvent (2008)	AND & NOT	O(N+n)	$O(k_u)$	$\mathit{O}(u + \ell)$
Junod-Karlov (2010)	CNF	O(N+n)	O(N+n)	$\mathit{O}(ar{ u})$
Zhou-Huang (2010)	AND & NOT	$O(N + \log n)$	$O(N + \log n)$	$O(\log n)$
Li-Zhang (2015)	Monotone	O(N+n)	$O(k_u+n)$	${\it O}(u)$
This paper	CNF	O(N)	O(N)	$\mathit{O}(ar{ u} + \ell)$

Legend: k_u is the number of attributes assigned to a receiver $u \in \mathcal{U}$, ν the length of the access structure, $\bar{\nu}$ the number of clauses in a CNF access structure, $N = |\mathcal{B}|$, $n = |\mathcal{U}|$ and $\ell = |\mathcal{R}|$.

Plan

1 Preliminaries

2 The New Scheme

- 3 Security & Performances
- 4 Practical Aspects

iminaries The New Scheme Security & Performances Practical Aspects

Practical Implementation

- Scheme implemented in C++ with Stanford's open-source Pairing-Based Cryptography (PBC) library.
- Group with a 160-bit order and a 512-bit base field order.
- Scenario with 5 attributes run on an Intel Core i7 clocked at 2.3 GHz.
 - Setup phase (including public key generation): 237 ms
 - Private key generation (for each receiver): 75 ms
 - Decryption of a message with 3 clauses without revocation:
 25 ms
 - Each revocation adds 4 ms to the decryption time.

Thank you

고맙습니다

The full version of this paper is available at http://eprint.iacr.org/2015/836.