New Attacks against Reduced-Round Versions of IDEA

Pascal Junod

FSE'05 - Paris (France), February 23 ${ }^{\text {rd }}, 2005$

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

The IDEA Block Cipher

\rightarrow Encrypts 64-bit blocks under a 128-bit key.
\rightarrow Designed by Lai and Massey
\rightarrow Tweak of PES (Proposed Encryption Standard)
\rightarrow Design principles: mix three algebraically incompatible group operations
\rightarrow Very popular cipher (still unbroken !!, building block of first versions of PGP)

The IDEA Block Cipher (2)

\rightarrow Large cryptanalytical record (at least 10 papers from 1993 to 2004)
\rightarrow Best attack: 5 rounds (out of 8.5) in $O\left(2^{126}\right)$ operations and $O\left(2^{64}\right)$ memory with help of 2^{24} chosen plaintexts by Demirci, Selçuk and Türe [SAC'03].
\rightarrow Some papers break 8.5 rounds of IDEA, but the attacks work for a negligible portion of the keys.

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation

3 New Attacks

- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

A Round of IDEA

A Round of IDEA

IDEA operations

\rightarrow Three group operations: \oplus, \boxplus, \odot
$\rightarrow \oplus$: XOR on 16 -bit values.
$\rightarrow \boxplus$: addition modulo 2^{16}
$\rightarrow \odot$: multiplication of $\operatorname{GF}\left(2^{16}+1\right)^{*}$ (multiplication modulo $2^{16}+1$, where 0 is seen as 2^{16})

Full Cipher

\rightarrow Full cipher made of 8.5 rounds
\rightarrow Key-Schedule algorithm: produce 52 16-bit subkeys out of the 128-bit key
\rightarrow Algorithm:

- Partition Z into eight 16 -bit blocks, and assign these blocks directly to the first eight subkeys.
- Repeat the following until all remaining subkeys are assigned: rotate Z left 25 bits, partition the result, and assign these blocks to the next eight subkeys.

Key Schedule

Round r	$Z_{1}^{(r)}$	$Z_{2}^{(r)}$	$Z_{3}^{(r)}$	$Z_{4}^{(r)}$	$Z_{5}^{(r)}$	$Z_{6}^{(r)}$
1	$Z_{[0 \ldots 15]}$	$Z_{[16 \ldots 31]}$	$Z_{[32 \ldots 47]}$	$Z_{[48 \ldots 63]}$	$Z_{[64 \ldots 79]}$	$Z_{[80 \ldots 95]}$
2	$Z_{[96 \ldots 111]}$	$Z_{[112 \ldots 127]}$	$Z_{[25 \ldots 40]}$	$Z_{[41 \ldots 56]}$	$Z_{[57 \ldots 72]}$	$Z_{[73 \ldots 88]}$
3	$Z_{[89 \ldots 104]}$	$Z_{[105 \ldots 120]}$	$Z_{[121 \ldots 8]}$	$Z_{[9 \ldots 24]}$	$Z_{[50 \ldots 65]}$	$Z_{[66 \ldots 81]}$
4	$Z_{[82 \ldots 97]}$	$Z_{[98 \ldots 113]}$	$Z_{[114 \ldots 1]}$	$Z_{[2 \ldots 17]}$	$Z_{[18 \ldots 33]}$	$Z_{[344 . \ldots 4]}$
5	$Z_{[75 \ldots 90]}$	$Z_{[91 \ldots 106]}$	$Z_{[107 \ldots 122]}$	$Z_{[123 \ldots 10]}$	$Z_{[11 \ldots 26]}$	$Z_{[27 \ldots 42]}$
6	$Z_{[43 \ldots 58]}$	$Z_{[59 \ldots 74]}$	$Z_{[100 \ldots 115]}$	$Z_{[116 \ldots 3]}$	$Z_{[4 \ldots 19]}$	$Z_{[20 \ldots 35]}$
7	$Z_{[36 \ldots 51]}$	$Z_{[52 \ldots 67]}$	$Z_{[68 \ldots 83]}$	$Z_{[84 \ldots 99]}$	$Z_{[125 \ldots 12]}$	$Z_{[13 \ldots 28]}$
8	$Z_{[29 \ldots 44]}$	$Z_{[45 \ldots 60]}$	$Z_{[61 \ldots 76]}$	$Z_{[77 \ldots 92]}$	$Z_{[93 \ldots 108]}$	$Z_{[109 \ldots 124]}$
8.5	$Z_{[22 \ldots 37]}$	$Z_{[38 \ldots 53]}$	$Z_{[54 \ldots 69]}$	$Z_{[70 \ldots 85]}$		

A First Observation

$\rightarrow \alpha^{(r)}$ and $\beta^{(r)}$: two inputs of the MA-box
$\rightarrow \gamma^{(r)}$ and $\delta^{(r)}$: two outputs of the MA-box
\rightarrow Demirci, 2002: For any round number r,

$$
\operatorname{Isb}\left(\gamma^{(r)} \oplus \delta^{(r)}\right)=\operatorname{Isb}\left(\alpha^{(r)} \odot Z_{5}^{(r)}\right)
$$

where $\operatorname{Isb}(a)$ denotes the least significant (rightmost) bit of a.

IDEA in a Nutshell

A First Observation (2)

A Second Observation

\rightarrow Biryukov: The two middle words in a block are only combined, either with subkeys or internal cipher state, via two group operations which are linear in their least significant bit.

A Second Observation (2)

The Biryukov-Demirci Relation

Nakahara et al (ACISP'04):

Theorem

For any number of rounds n in the IDEA block cipher, the following expression is true with probability one:
$\operatorname{Isb}\left(\bigoplus_{i=1}^{n}\left(\gamma^{(i)} \oplus \delta^{(i)}\right) \oplus X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus Y_{2}^{(n+1)} \oplus Y_{3}^{(n+1)}\right)=$

$$
\operatorname{Isb}\left(\bigoplus_{j=1}^{n}\left(Z_{2}^{(j)} \oplus Z_{3}^{(j)}\right)\right)
$$

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

Demirci-Biryukov Relation on 1.5-Round IDEA

\rightarrow Legend: known value / constant value / guessed value
$\operatorname{Isb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus\right.$

$$
\left.Z_{5}^{(1)} \odot\left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus\left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right)=0
$$

Demirci-Biryukov Relation on 1.5-Round IDEA

\rightarrow Legend: known value / constant value / guessed value

$$
\begin{array}{r}
\mathrm{Isb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus\right. \\
\left.Z_{5}^{(1)} \odot\left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus\left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right)=0
\end{array}
$$

Demirci-Biryukov Relation on 1.5-Round IDEA

\rightarrow Legend: known value / constant value / guessed value

$$
\begin{array}{r}
\operatorname{Isb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus\right. \\
\left.Z_{5}^{(1)} \odot\left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus\left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right)=0
\end{array}
$$

Demirci-Biryukov Relation on 1.5-Round IDEA

\rightarrow Allows to get two 48-bit subkey candidates in less than $O\left(2^{50}\right)$ operations using 55 known plaintexts.
\rightarrow First trick: apply the Demirci-Biryukov relation in the decryption direction (à la Matsui)
\rightarrow Allows to recover 48 other bits within the same complexity
\rightarrow Other 32 unknown key bits: exhaustive search

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

Simple Chosen-Plaintext Attacks

\rightarrow Second trick: fix $X_{1}^{(1)}$ and $X_{3}^{(1)}$ to an arbitrary constant (à la Knudsen-Mathiassen).
\rightarrow Guess appropriate subkeys and check the candidates with respect to the Demirci-Biryukov relation.

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

Attacking $1 \frac{1}{2}$-Round IDEA

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4 Conclusion

Time-Memory Tradeoff

- Trading time and memory allows to relax a chosen-plaintext oracle.
- Idea: for all possible values of $Z_{1}^{(1)}, Z_{3}^{(1)}$, and $Z_{5}^{(1)}$, compute the partial value of the Demirci-Biryukov relation. Store these values in a table.
- Guess the appropriate subkeys and partially decrypt a small set of known plaintext-ciphertext pairs until a match is found.

Outline

(1) IDEA in a Nutshell

- Some History
- Description
(2) Demirci-Biryukov Relation
(3) New Attacks
- Attacking $1 \frac{1}{2}$-Round IDEA
- Attacking up to $3 \frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

4) Conclusion

New Square-Like Distinguisher

Theorem (Square-Like Distinguisher on 2.5-Round IDEA)

Let 2^{16} different inputs of 2.5 -round IDEA be defined as follows: $X_{1}^{(1)}, X_{2}^{(1)}$, and $X_{3}^{(1)}$ are fixed to arbitrary constants, and $X_{4}^{(1)}$ takes all possible values. Then the XOR of the 2^{16} values of the equation

$$
\begin{array}{r}
\operatorname{lsb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(1)} \oplus C_{3}^{(1)} \oplus\right. \\
\left.Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus Z_{2}^{(3)} \oplus Z_{3}^{(3)}\right) \oplus \\
\operatorname{lsb}\left(\gamma^{(1)} \oplus \delta^{(1)}\right) \oplus \operatorname{lsb}\left(\gamma^{(2)} \oplus \delta^{(2)}\right)
\end{array}
$$

is equal to 0 with probability one.

New Square-Like Distinguisher (2)

- Idea: use a few saturated structures and mount the same type of attacks.
- Allows to attack up to 4 rounds

Complexities (2 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
2	$2^{10} \mathrm{CP}$	2^{42}	differential	[Meier, 1993]	
2	62 CP	2^{34}	linear-like	this paper	
2	23 CP	2^{64}	square-like	[Demirci, 2002]	

IDEA in a Nutshell

Complexities (2.5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
2.5	$2^{10} \mathrm{CP}$	2^{106}	differential	[Meier, 1993]	Memory: 2^{96}
2.5	$2^{10} \mathrm{CP}$	2^{32}	differential	[Daemen et al, 1993]	For one key out of 2^{77}
2.5	$2^{18} \mathrm{CP}$	2^{58}	square	[Nakahara et al, 2002]	
2.5	$2^{32} \mathrm{CP}$	2^{59}	square	[Nakahara et al, 2002]	
2.5	$2^{48} \mathrm{CP}$	2^{79}	square	[Nakahara et al, 2002]	
2.5	2 CP	2^{37}	square	[Nakahara et al, 2002]	Under 2 ${ }^{16}$ rel. keys
2.5	55 CP	2^{81}	square-like	[Demirci, 2002]	
2.5	101 CP	2^{48}	linear-like	this paper	
2.5	97 KP	2^{90}	linear-like	[Nakahara et al, 2003]	Memory: 2^{48}
2.5	55 KP	2^{54}	linear-like	this paper	Merner

IDEA in a Nutshell

Complexities (3 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
3	$2^{29} \mathrm{CP}$	2^{44}	differential-linear	[Borst et al, 1997]	
3	71 CP	2^{71}	square-like	[Demirci, 2002]	this paper
3	71 CP	2^{64}	linear-like	[Demirci et al, 2003]	Memory: 2^{64}
3	$2^{33} \mathrm{CP}$	2^{64}	collision	this paper + [Demirci, 2002]	
3	$2^{33} \mathrm{CP}$	2^{50}	combination of attacks	this paper	
3	$2^{22} \mathrm{CP}$	2^{50}	square-like	this paper	Memory: 2^{48}
3	71 KP	2^{70}	linear-like		

IDEA in a Nutshell

Complexities (3.5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
3.5	$2^{56} \mathrm{CP}$	2^{67}	truncated diff.	[Borst et al, 1997]	
3.5	$2^{38.5} \mathrm{CP}$	2^{53}	impossible diff.	[Biham et al, 1999]	Memory: 248
3.5	$2^{34} \mathrm{CP}$	2^{82}	square-like	[Demirci, 2002]	
3.5	$2^{24} \mathrm{CP}$	2^{73}	collision	[Demirci et al, 2003]	
3.5	$2^{22} \mathrm{CP}$	2^{66}	square-like	this paper	
3.5	103 CP	2^{103}	square-like	[Demirci, 2002]	
3.5	103 CP	2^{97}	linear-like	this paper	
3.5	119 KP	2^{112}	linear-like	[Nakahara et al, 2003]	
3.5	103 KP	2^{97}	linear-like	this paper	Memory: 2^{48}

IDEA in a Nutshell

Complexities (4 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
4	$2^{37} \mathrm{CP}$	2^{70}	impossible diff.	[Biham et al, 1999]	Memory: 2^{48}
4	$2^{34} \mathrm{CP}$	2^{114}	square-like	[Demirci, 2002]	
4	$2^{24} \mathrm{CP}$	2^{89}	collision	[Demirci et al, 2003	Memory: 2^{64}
4	$2^{23} \mathrm{CP}$	2^{98}	square-like	this paper	
4	121 KP	2^{114}	linear-like	[Nakahara et al, 2003]	

Complexities (4.5 and 5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
4.5	$2^{64} \mathrm{CP}$	2^{112}	impossible diff.	[Biham et al, 1999]	
4.5	$2^{24} \mathrm{CP}$	2^{121}	collision	[Demirci et al, 2003]	Memory: 2^{64}
5	$2^{24} \mathrm{CP}$	2^{126}	collision	[Demirci et al, 2003]	Memory: 2^{64}

Thank You!

