New Attacks against Reduced-Round Versions of IDEA

Pascal Junod

FSE'05 – Paris (France), February 23rd, 2005

Outline

• New Square-Like Distinguisher

Conclusion

Some History Description

Outline

Conclusion

A ₽ >

Some History Description

The IDEA Block Cipher

- \rightarrow Encrypts 64-bit blocks under a 128-bit key.
- $\rightarrow\,$ Designed by Lai and Massey
- \rightarrow Tweak of PES (Proposed Encryption Standard)
- \rightarrow Design principles: mix three algebraically incompatible group operations
- \rightarrow Very popular cipher (still unbroken !!, building block of first versions of PGP)

Some History Description

The IDEA Block Cipher (2)

- \rightarrow Large cryptanalytical record (at least 10 papers from 1993 to 2004)
- → Best attack: 5 rounds (out of 8.5) in $O(2^{126})$ operations and $O(2^{64})$ memory with help of 2^{24} chosen plaintexts by Demirci, Selçuk and Türe [SAC'03].
- $\rightarrow\,$ Some papers break 8.5 rounds of IDEA, but the attacks work for a negligible portion of the keys.

Some History Description

Outline

- Some History
- Description
- 2 Demirci-Biryukov Relation
- 3 New Attacks
 - Attacking $1\frac{1}{2}$ -Round IDEA
 - Attacking up to $3\frac{1}{2}$ Rounds
 - Time-Memory Tradeoff
 - New Square-Like Distinguisher

Conclusion

A ₽ >

IDEA in a Nutshell Demirci-Biryukov Relation

ukov Relation New Attacks Conclusion

A Round of IDEA

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

IDEA in a Nutshell

Demirci-Biryukov Relation New Attacks Conclusion

Some History Description

A Round of IDEA

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Some History Description

IDEA operations

- $\rightarrow\,$ Three group operations: \oplus , \boxplus , $\odot\,$
- \rightarrow \oplus : XOR on 16-bit values.
- \rightarrow \boxplus : addition modulo 2¹⁶
- \rightarrow : multiplication of GF(2¹⁶ + 1)* (multiplication modulo 2¹⁶ + 1, where 0 is seen as 2¹⁶)

Some History Description

Full Cipher

- \rightarrow Full cipher made of 8.5 rounds
- \rightarrow Key-Schedule algorithm: produce 52 16-bit subkeys out of the 128-bit key
- \rightarrow Algorithm:
 - Partition Z into eight 16-bit blocks, and assign these blocks directly to the first eight subkeys.
 - Repeat the following until all remaining subkeys are assigned: rotate Z left 25 bits, partition the result, and assign these blocks to the next eight subkeys.

IDEA in a Nutshell

Demirci-Biryukov Relation New Attacks Conclusion

Some History Description

Key Schedule

Round r	$Z_{1}^{(r)}$	$Z_{2}^{(r)}$	$Z_{3}^{(r)}$	$Z_4^{(r)}$	$Z_{5}^{(r)}$	$Z_{6}^{(r)}$
1	$Z_{[015]}$	$Z_{[1631]}$	Z _[3247]	Z _[4863]	$Z_{[6479]}$	Z _[8095]
2	$Z_{[96111]}$	Z _[112127]	Z _[2540]	$Z_{[4156]}$	Z _[5772]	Z _[7388]
3	$Z_{[89104]}$	$Z_{[105120]}$	Z _[1218]	Z _[924]	Z _[5065]	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	Z _[1163]	Z _[419]	Z _[2035]
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	Z _[1328]
8	$Z_{[2944]}$	$Z_{[4560]}$	Z _[6176]	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
8.5	Z _[2237]	Z _[3853]	Z _[5469]	Z _[7085]		-

・ロン ・四ト ・ヨン ・ヨン

A First Observation

- $\rightarrow \alpha^{(r)}$ and $\beta^{(r)}$: two inputs of the MA-box
- $\rightarrow~\gamma^{(r)}$ and $\delta^{(r)}$: two outputs of the MA-box
- \rightarrow Demirci, 2002: For any round number r,

$$\mathsf{lsb}\left(\gamma^{(r)} \oplus \delta^{(r)}\right) = \mathsf{lsb}\left(\alpha^{(r)} \odot Z_5^{(r)}\right)$$

where lsb(a) denotes the least significant (rightmost) bit of a.

A First Observation (2)

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

æ

A Second Observation

→ Biryukov: The two middle words in a block are only combined, either with subkeys or internal cipher state, via two group operations which are linear in their least significant bit.

A Second Observation (2)

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

The Biryukov-Demirci Relation

Nakahara et al (ACISP'04):

Theorem

For any number of rounds n in the IDEA block cipher, the following expression is true with probability one:

$$\mathsf{lsb}\left(\bigoplus_{i=1}^{n} \left(\gamma^{(i)} \oplus \delta^{(i)}\right) \oplus X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus Y_{2}^{(n+1)} \oplus Y_{3}^{(n+1)}\right) = \mathsf{lsb}\left(\bigoplus_{j=1}^{n} \left(Z_{2}^{(j)} \oplus Z_{3}^{(j)}\right)\right)$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Outline

Conclusion

< 🗇 🕨

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Demirci-Biryukov Relation on 1.5-Round IDEA

 \rightarrow Legend: known value / constant value / guessed value

$$\mathsf{lsb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus Z_{3}^{(1)} \odot \left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus \left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right) = 0$$

(ロ) (部) (E) (E)

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Demirci-Biryukov Relation on 1.5-Round IDEA

 \rightarrow Legend: known value / constant value / guessed value

$$\begin{aligned} \mathsf{lsb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus Z_{3}^{(1)} \odot \left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus \left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right) &= 0 \end{aligned}$$

(ロ) (部) (E) (E)

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Demirci-Biryukov Relation on 1.5-Round IDEA

 \rightarrow Legend: known value / constant value / guessed value

$$\mathsf{lsb}\left(X_{2}^{(1)} \oplus X_{3}^{(1)} \oplus C_{2}^{(2)} \oplus C_{3}^{(2)} \oplus Z_{2}^{(1)} \oplus Z_{3}^{(1)} \oplus Z_{2}^{(2)} \oplus Z_{3}^{(2)} \oplus Z_{3}^{(1)} \odot \left(\left(X_{1}^{(1)} \odot Z_{1}^{(1)}\right) \oplus \left(X_{3}^{(1)} \boxplus Z_{3}^{(1)}\right)\right)\right) = 0$$

(ロ) (部) (E) (E)

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Demirci-Biryukov Relation on 1.5-Round IDEA

- \rightarrow Allows to get two 48-bit subkey candidates in less than $O(2^{50})$ operations using 55 known plaintexts.
- → First trick: apply the Demirci-Biryukov relation in the decryption direction (à la Matsui)
- \rightarrow Allows to recover 48 other bits within the same complexity
- \rightarrow Other 32 unknown key bits: exhaustive search

 $\begin{array}{l} \mbox{Attacking $1\frac{1}{2}$-Round IDEA} \\ \mbox{Attacking up to $3\frac{1}{2}$ Rounds} \\ \mbox{Time-Memory Tradeoff} \\ \mbox{New Square-Like Distinguisher} \end{array}$

Outline

4 Conclusion

A (1) > A (1) > A

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks

- \rightarrow Second trick: fix $X_1^{(1)}$ and $X_3^{(1)}$ to an arbitrary constant (à la Knudsen-Mathiassen).
- $\rightarrow\,$ Guess appropriate subkeys and check the candidates with respect to the Demirci-Biryukov relation.

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Simple Chosen-Plaintext Attacks (2)

known value / constant value / guessed value

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Outline

- Some History
- Description

2 Demirci-Biryukov Relation

3 New Attacks

- Attacking $1\frac{1}{2}$ -Round IDEA
- Attacking up to $3\frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

Conclusion

A (1) > A (1) > A

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

Time-Memory Tradeoff

- Trading time and memory allows to relax a chosen-plaintext oracle.
- Idea: for all possible values of $Z_1^{(1)}$, $Z_3^{(1)}$, and $Z_5^{(1)}$, compute the partial value of the Demirci-Biryukov relation. Store these values in a table.
- Guess the appropriate subkeys and partially decrypt a small set of known plaintext-ciphertext pairs until a match is found.

 $\begin{array}{l} \mbox{Attacking $1\frac{1}{2}$-Round IDEA} \\ \mbox{Attacking up to $3\frac{1}{2}$ Rounds} \\ \mbox{Time-Memory Tradeoff} \\ \mbox{New Square-Like Distinguisher} \end{array}$

Outline

- Some History
- Description

2 Demirci-Biryukov Relation

3 New Attacks

- Attacking $1\frac{1}{2}$ -Round IDEA
- Attacking up to $3\frac{1}{2}$ Rounds
- Time-Memory Tradeoff
- New Square-Like Distinguisher

Conclusion

A (1) > A (1) > A

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

New Square-Like Distinguisher

Theorem (Square-Like Distinguisher on 2.5-Round IDEA)

Let 2^{16} different inputs of 2.5-round IDEA be defined as follows: $X_1^{(1)}$, $X_2^{(1)}$, and $X_3^{(1)}$ are fixed to arbitrary constants, and $X_4^{(1)}$ takes all possible values. Then the XOR of the 2^{16} values of the equation

$$\begin{aligned} \mathsf{lsb}\left(X_2^{(1)} \oplus X_3^{(1)} \oplus C_2^{(1)} \oplus C_3^{(1)} \oplus Z_2^{(1)} \oplus Z_2^{(2)} \oplus Z_3^{(2)} \oplus Z_2^{(3)} \oplus Z_3^{(3)}\right) \oplus \\ \mathsf{lsb}\left(\gamma^{(1)} \oplus \delta^{(1)}\right) \oplus \mathsf{lsb}\left(\gamma^{(2)} \oplus \delta^{(2)}\right) \end{aligned}$$

is equal to 0 with probability one.

イロト イヨト イヨト イヨト

Attacking $1\frac{1}{2}$ -Round IDEA Attacking up to $3\frac{1}{2}$ Rounds Time-Memory Tradeoff New Square-Like Distinguisher

New Square-Like Distinguisher (2)

- Idea: use a few saturated structures and mount the same type of attacks.
- Allows to attack up to 4 rounds

<ロ> (四) (四) (三) (三)

Complexities (2 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
2	2 ¹⁰ CP	2 ⁴²	differential	[Meier, 1993]	
2	62 CP	2 ³⁴	linear-like	this paper	
2	23 CP	2 ⁶⁴	square-like	[Demirci, 2002]	

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

イロト イポト イヨト イヨト

Complexities (2.5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
2.5	2 ¹⁰ CP	2 ¹⁰⁶	differential	[Meier, 1993]	Memory: 2 ⁹⁶
2.5	2 ¹⁰ CP	2 ³²	differential	[Daemen <i>et al</i> , 1993]	For one key out of 2 ⁷⁷
2.5	2 ¹⁸ CP	2 ⁵⁸	square	[Nakahara et al, 2002]	
2.5	2 ³² CP	2 ⁵⁹	square	[Nakahara et al, 2002]	
2.5	2 ⁴⁸ CP	2 ⁷⁹	square	[Nakahara et al, 2002]	
2.5	2 CP	2 ³⁷	square	[Nakahara et al, 2002]	Under 2 ¹⁶ rel. keys
2.5	55 CP	2 ⁸¹	square-like	[Demirci, 2002]	
2.5	101 CP	2 ⁴⁸	linear-like	this paper	
2.5	97 KP	2 ⁹⁰	linear-like	[Nakahara et al, 2003]	
2.5	55 KP	2 ⁵⁴	linear-like	this paper	Memory: 2 ⁴⁸

イロト イポト イヨト イヨト

Complexities (3 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
3	2 ²⁹ CP	2 ⁴⁴	differential-linear	[Borst <i>et al</i> , 1997]	
3	71 CP	271	square-like	[Demirci, 2002]	
3	71 CP	2 ⁶⁴	linear-like	this paper	
3	2 ³³ CP	2 ⁶⁴	collision	[Demirci et al, 2003]	Memory: 2 ⁶⁴
3	2 ³³ CP	2 ⁵⁰	combination of attacks	this paper + [Demirci, 2002]	
3	2 ²² CP	2 ⁵⁰	square-like	this paper	
3	71 KP	2 ⁷⁰	linear-like	this paper	Memory: 2 ⁴⁸

イロト イポト イヨト イヨト

Complexities (3.5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
3.5	2 ⁵⁶ CP	2 ⁶⁷	truncated diff.	[Borst et al, 1997]	
3.5	2 ^{38.5} CP	2 ⁵³	impossible diff.	[Biham et al, 1999]	Memory: 2 ⁴⁸
3.5	2 ³⁴ CP	2 ⁸²	square-like	[Demirci, 2002]	
3.5	2 ²⁴ CP	2 ⁷³	collision	[Demirci et al, 2003]	
3.5	2 ²² CP	2 ⁶⁶	square-like	this paper	
3.5	103 CP	2 ¹⁰³	square-like	[Demirci, 2002]	
3.5	103 CP	2 ⁹⁷	linear-like	this paper	
3.5	119 KP	2 ¹¹²	linear-like	[Nakahara et al, 2003]	
3.5	103 KP	2 ⁹⁷	linear-like	this paper	Memory: 2 ⁴⁸

Pascal Junod New Attacks against Reduced-Round Versions of IDEA

イロト イポト イヨト イヨト

Complexities (4 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
4 4 4 4	2 ³⁷ CP 2 ³⁴ CP 2 ²⁴ CP 2 ²³ CP	2 ⁷⁰ 2 ¹¹⁴ 2 ⁸⁹ 2 ⁹⁸	impossible diff. square-like collision <i>square-like</i>	[Biham <i>et al</i> , 1999] [Demirci, 2002] [Demirci <i>et al</i> , 2003 <i>this paper</i>	Memory: 2 ⁴⁸ Memory: 2 ⁶⁴
4	121 KP	2 ¹¹⁴	linear-like	[Nakahara et al, 2003]	

イロト イポト イヨト イヨト

Complexities (4.5 and 5 rounds)

Rounds	Data	Time	Attack type	Ref.	Note
4.5 4.5	2 ⁶⁴ CP 2 ²⁴ CP	2 ¹¹² 2 ¹²¹	impossible diff. collision	[Biham <i>et al</i> , 1999] [Demirci <i>et al</i> , 2003]	Memory: 2 ⁶⁴
5	2 ²⁴ CP	2 ¹²⁶	collision	[Demirci et al, 2003]	Memory: 2 ⁶⁴

イロト イヨト イヨト イヨト

Thank You!

・ロト ・回ト ・ヨト ・ヨト