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Introduction

? A typical problem for a cryptanalyst: try to find something “deviant” in
a cryptographic primitive.

Another typical problem: try to
distinguish efficiently the (sub-)
key(s) which makes deviate the
primitive the most.
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Introduction (2)

? In this talk: we are interested in certain settings of the second

problem.

? One can view this problem in a more general way than the

cryptographic one.
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Introduction (3)

? Goal: apply statistical concepts to well-known cryptanalytic

techniques.

? Result: one can prove optimality results.

? Interestingly, this has practical applications !
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Statistical Tests

? D0 and D1, two different probability distributions defined on

the same finite set X .

? Given an element x ∈ X (modeled by a random variable de-

noted X) drawn according either to D0 or to D1, one has to

decide which is the case.
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Statistical Tests (2)

? One uses a decision rule

δ : X → {0,1}
taking a sample of X as input and defining what should be the guess for
each possible x ∈ X .

? Two different types of error probabilities:

α , Pr
X0

[δ(X) = 1]

β , Pr
X1

[δ(X) = 0]
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Statistical Tests (3)

A Swiss instance of the

problem: in 1992, Swiss

people had to vote whether

they wanted to become Eu-

ropean or not.
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Statistical Tests (4)

? It was possible to separate the Swiss (voting) population in two categories
according to a simple criterion.

1. In one part of the voters, a big majority was in favour of becoming
European.

2. In the other part of the voters, a big majority was in favour of not
becoming European.

? Question: given a random Swiss citizen, what is the best way to decide
whether (s)he voted YES or NO become an European ?
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Statistical Tests (5)

? In statistics, one calls this type of decision a binary hypothesis

test (or simple hypothesis test).

? In fact, each of these hypotheses completely specifies the

probability distributions.

? An hypothesis test which is not simple is called composite

hypothesis test. For instance, a χ2-test is a composite test.
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Statistical Tests (6)

? The decision rule δ defines a partition of X in two disjoint

subsets A and A.

? The optimal decision rule is given by the Neyman-Pearson

Lemma based on the likelihood-ratio:

A ,

x ∈ X :
PrX←D0

[x]

PrX←D1
[x]
≥ τ

 (1)
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Statistical Tests (7)

Definition 1 (Optimal Binary Hypothesis Test)

To test X ← D0 against X ← D1, choose a constant τ > 0

depending on α and β and define the likelihood ratio

lr(x) ,
PrX←D0

[x]

PrX←D1
[x]

The optimal decision function is then defined by

δopt ,

{
0 (i.e accept X ← D0) if lr(x) ≥ τ
1 (i.e. accept X ← D1) if lr(x) < τ
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Statistical Tests (8)

Back to the Swiss instance of the
problem: let us assume that our
first hypothesis is “voted YES”; a
likelihood-ratio decision rule could
have been “Is your mothertongue
French ?”.
• α ≡ probability that a french-

speaking Swiss citizen voted
NO.

• β ≡ probability that a
german-speaking, italian-
speaking or rumantsch-
speaking Swiss citizen voted
YES.
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Optimal Key Ranking Procedures

? Linear Cryptanalysis: generic technique invented by Matsui

in 1993 in an application to DES. Refined and implemented

in 1994.

? Principles: Find a,b and c such that

a ·X + b · C(X) = c ·K

is probabilistically biased.
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Optimal Key Ranking Procedures (2)

With full-DES (16 rounds),

take the best 14-rounds lin-

ear characteristic, then de-

crypt the first and last

rounds with subkey candi-

dates.
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Optimal Key Ranking Procedures (3)

? For each subkey candidate, count the number of times that
the linear approximation is equal to 0, given all the plaintext
and ciphertext pairs (N ≈ 243 for DES)

? If there is enough plaintext-ciphertext pairs, the good subkey
candidate should deviate the most from N

2 .

? Search exhaustively for the remaining missing key bits for the
best candidate.
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Optimal Key Ranking Procedures (4)

1: Prepare m counters ui,1 ≤ i ≤ m and initialize them to 0.
2: for all Known plaintext-ciphertext pairs at disposal do
3: for all Subkey candidates do
4: Decrypt the first and last rounds and evaluate the linear expression.
5: if It evaluates to 0 then
6: Increment the corresponding counter
7: end if
8: end for
9: end for

10: Output the subkey candidate corresponding to the most biased counter
as the right one.
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Optimal Key Ranking Procedures (5)

? Data complexity: the number N of needed known plaintext-
ciphertext pairs.

? Computational complexity: the number of DES evaluations
during the exhaustive search part.

? Key ranking was introduced in 1994 Matsui’s paper; instead
of taking the most biased, take the ` most biased and search
them one after the other for the remaining unknown bits.
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Optimal Key Ranking Procedures (6)

? Ranking strategy ?

? Intuitive way (the one in Matsui’s paper): rank them from

the highest to the smallest bias.

? Is it optimal in terms of computational complexity ?
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Optimal Key Ranking Procedures (7)

? Neyman-Pearson Ranking Procedure: if probability distribu-

tions modelling the subkeys are available, one can rank the

candidates by decreasing likelihood-ratio.

? Under reasonable hypotheses, they are known in the case of

a linear cryptanalysis [Jun01].
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Optimal Key Ranking Procedures (8)

? One can show that this ranking procedure is optimal in terms

of computational complexity.

? Matsui’s ranking procedure is equivalent to a Neyman-Pearson

Ranking Procedure (and thus optimal).
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Optimal Key Ranking Procedures (9)

? More interesting problem: Matsui’s refined attack (1994)
uses two linear approximations involving disjoint key bits sub-
sets.

?

Matsui’s proposition (based on intu-

ition): rank them independantly fol-

lowing their bias, and then build a

single list sorted by increasing prod-

uct of ranks.

1.

2.

3.

...

1.

2.

3.

...

1. (1, 1)

2. (1, 2)

3. (2, 1)

4. (1, 3)

5. (3, 1)

6. (2, 2)

...
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Optimal Key Ranking Procedures (10)

? Interestingly, one can easily use a NP-Ranking Procedure.

? Optimal in terms of computational complexity.
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Optimal Key Ranking Procedures (11)

? In the case of DES, the likelihood-ratio is given by

µ(`1,`2)
= 2e−2nε2 · cosh(4εΣ`1) · cosh(4εΣ`2) (2)

? Taylor approximation:

µ(`1,`2)
≈ 2 + (16Σ2

`1
+ 16Σ2

`2
− 4n)ε2 + O(ε4) (3)

? Simple to implement: sort by decreasing sum of the squares
of the biases !
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Optimal Key Ranking Procedures (12)

? Experimental results on 21 linear cryptanalysis of DES: de-
crease of about 50 % of the computational complexity.

? One can convert this gain in a decrease of N (about 31 %).

? A possible tradeoff: given 242.46 known plaintext-ciphertext
pairs, it was possible to recover a complete DES key within
244.46 DES evaluations with a success probability equal to
85 %.
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Conclusion

? Situations of binary hypothesis tests occurs very frequently

in cryptography.

? Using concepts of statistics, one can design optimal distin-

guishing procedures.
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THANK YOU !


