
IDEA
Past - Present - Future

Pascal Junod
(joint work with Marco Macchetti, Nagravision SA)

ESC’10 - January 14, 2010
Remich (Luxembourg)

Outline

> IDEA
> WIDEA
> HIDEA

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg) 2

IDEA // A Bit of History

> Block cipher designed by Lai and Massey in 1990 on behalf
of Ascom AG
> 64-bit block, 128-bit key
> Very simple philosophy

> Mix three different and algebraically incompatible group
laws on 16-bit words

> ... addition over
> ... addition over
> ... multiplication over

> Simple, fully linear bit-selecting key-schedule algorithm
> Quite popular during the 90’s thanks to PGP
> Mostly used today as a LUF (Legally Unclonable Function)

3

⊕
!
!

(Z/2Z)16
Z/(216Z)

Z∗
216+1

IDEA - Past, Present, Future - ESC’10 - January 13, 2010, Remich (Luxembourg)

IDEA // Round Function

4IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // Round Function

4IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // Round Function

4IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // Round Function

4IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // Current Security Level

> Designed to resist differential cryptanalysis
> Extensively cryptanalyzed

> More than 15 published paper so far
> As of today, the best attack by Sun and Lai [SunLai09]
breaks 6 out of 8.5 rounds with help of chosen plaintexts
and encryption operations (in a classical scenario)
> Virtually all the attacks largely exploit properties of the fully
linear key scheduling

5

249

2112.1

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Key-Schedule Algorithm

6IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Round i Z(i)
1 Z(i)

2 Z(i)
3 Z(i)

4 Z(i)
5 Z(i)

6

1 Z[0...15] Z[16...31] Z[32...47] Z[48...63] Z[64...79] Z[80...95]

2 Z[96...111] Z[112...127] Z[25...40] Z[41...56] Z[57...72] Z[73...88]

3 Z[89...104] Z[105...120] Z[121...8] Z[9...24] Z[50...65] Z[66...81]

4 Z[82...97] Z[98...113] Z[114...1] Z[2...17] Z[18...33] Z[34...49]

5 Z[75...90] Z[91...106] Z[107...122] Z[123...10] Z[11...26] Z[27...42]

6 Z[43...58] Z[59...74] Z[100...115] Z[116...3] Z[4...19] Z[20...35]

7 Z[36...51] Z[52...67] Z[68...83] Z[84...99] Z[125...12] Z[13...28]

8 Z[29...44] Z[45...60] Z[61...76] Z[77...92] Z[93...108] Z[109...124]

9 Z[22...37] Z[38...53] Z[54...69] Z[70...85]

IDEA // Philosophy Recycling

> On May 16th, 2011, IDEA will fall into the public domain
> The «IDEA way» to build a cipher looks like to be valid in
terms of security
> Existing derivates (like MESH ciphers) are not very
competitive in terms of speed
> Can we recycle this approach to design something new and
fast, with a look at hash functions and authenticated
encryption ?

7IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

IDEA // A Fast Implementation

> Implementation of 8-way IDEA on the x86_64
architecture using the SSE2 instruction set [JunMac09]
running at 5.4 clocks/byte on an Intel Core2 CPU
> Motivated the design of WIDEA-8

> Block cipher with 512-bit block size, 1024-bit key size
> Fully respect the IDEA philosophy
> New key-schedule
> Keep highest possible parallelism
> Inherit all the good security properties of IDEA

8IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Outline

> IDEA
> WIDEA
> HIDEA

9IDEA - Past, Present, Future - ESC’10 - January 13, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // As a Single Picture

10IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Optimal Cross-Diffusion

> Diffusion across the 8 instances through a -linear
 -multipermutation over
> Only «sequential» step in the whole cipher

> But it is still possible to perform some of the operations
in parallel

11

GF(2)
(8, 8) GF(216)

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Key-Schedule Algorithm

> Non-linear feedback shift register
> Fast diffusion (full diffusion after 3 rounds of WIDEA)
> Asymmetry brought through iteration-dependent constants
> Design similar to the Rijndael key-schedule algorithm

12

Zi = Ki 0 ≤ i ≤ 7

Zi = ((((Zi−1 ⊕ Zi−8)
16
! Zi−5)

16≪ 5) ≪ 24)⊕ C i
8−1 8 ≤ i ≤ 51, 8 | i

Zi = ((((Zi−1 ⊕ Zi−8)
16
! Zi−5)

16≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 ! i

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Security Considerations

> Two sequential operations are always algebraically
incompatible
> Thanks to the MDS matrix, we get full diffusion after a
single round

> Total of eight full diffusion
> More than most existing designs

> Differential, linear and integral properties expected to
behave the same way than for IDEA
> The new non-linear key-schedule further strengthen the
design

13IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Implementation

> WIDEA-8 is fully specified in the FSE’09 paper
> Implemented as a compression function

> Davies-Meyer mode
> Merkle-Damgard scheme
> SSE3 instruction set on an Intel Core 2
> 5.98 clocks / byte

> Fill the gap from the compression function to a full-flavored
hash function

> HIDEA

14IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Outline

> IDEA
> WIDEA
> HIDEA

15IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Introduction

> FSE’10 anonymous reviewer comment
However, given where we are with SHA-3,
the authors should provide better
justification for why we need yet
another hash function proposal.

> Main goals
> Recycle the «IDEA philosophy»
> Get a new toy to play with
> Propose a somewhat alternative design to the many-
iterations-of-a-light-function approach

16IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Basics

> HIDEA (= «Hash» based on IDEA)
> Design relies on Biham and Dunkelman’s HAIFA framework

> Two instances
> HIDEA-256

> 256-bit digest
> 128-bit salt
> 64-bit counter
> 10.5-round WIDEA-4 as compression function

> HIDEA-512
> 512-bit digest
> 256-bit salt
> 128-bit counter
> 10.5-round WIDEA-8 as compression function

17IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Counter Inclusion

> Cross-diffusion involves also the counter value:

18

Y = MDS(X) =

y0

y1

y2

y3

y4

y5

y6

y7

=

0x1 0x1 0x4 0x1 0x8 0x5 0x2 0x9
0x9 0x1 0x1 0x4 0x1 0x8 0x5 0x2
0x2 0x9 0x1 0x1 0x4 0x1 0x8 0x5
0x5 0x2 0x9 0x1 0x1 0x4 0x1 0x8
0x8 0x5 0x2 0x9 0x1 0x1 0x4 0x1
0x1 0x8 0x5 0x2 0x9 0x1 0x1 0x4
0x4 0x1 0x8 0x5 0x2 0x9 0x1 0x1
0x1 0x4 0x1 0x8 0x5 0x2 0x9 0x1

·

x0

x1

x2

x3

x4

x5

x6

x7

⊕ C

Y = MDS(X) =

y0

y1

y2

y3

 =

0x2 0x3 0x1 0x1
0x1 0x2 0x3 0x1
0x1 0x1 0x2 0x3
0x3 0x1 0x1 0x2

 ·

x0

x1

x2

x3

⊕ C

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Seed Inclusion

> Seed is handled as a round subkey and included using the
 operation

19

!

Z6i = K5(j−1)

Z6i+1 = S0 and Z6i+2 = K5(j−1)+1 if j ≡ 1 (mod 2)
Z6i+1 = K5(j−1)+1 and Z6i+2 = S1 if j ≡ 0 (mod 2)
Z6i+3 = K5(j−1)+2

Z6i+4 = K5(j−1)+3

Z6i+5 = K5(j−1)+4.

IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Number of Rounds

> Compared to WIDEA which uses 8.5 rounds, we added two
additional rounds

> Invest two full rounds to inject the seed
> We still keep rather good performances on high-end
CPUs (Xeon CPU, end-of-2009 eBASH numbers)

20IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Hash function Speed (clock cycles / byte)
BMW-512 4.75
Skein-512 6.63
CubeHash8/32 6.70
HIDEA-512 7.65
Shabal-512 8.31
BMW-256 9.32
BLAKE-32 10.39
SIMD-256 12.87
Keccak 13.55
SHAvite-3 27.82
Grostl-512 30.11
Fugue-256 26.41
Hamsi 31.28
ECHO-256 36.35

HIDEA // Number of Rounds

> Compared to WIDEA which uses 8.5 rounds, we added two
additional rounds

> Invest two full rounds to inject the seed
> We still keep rather good performances on high-end
CPUs (Xeon CPU, end-of-2009 eBASH numbers)

20IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

Hash function Speed (clock cycles / byte)
BMW-512 4.75
Skein-512 6.63
CubeHash8/32 6.70
HIDEA-512 7.65
Shabal-512 8.31
BMW-256 9.32
BLAKE-32 10.39
SIMD-256 12.87
Keccak 13.55
SHAvite-3 27.82
Grostl-512 30.11
Fugue-256 26.41
Hamsi 31.28
ECHO-256 36.35

HIDEA // ATMega 8-bit Microcontroller

> First (rather unoptimized) implementation of HIDEA-256
on ATMega128

> Code segment size: less than 2 kB
> SRAM usage: 138 bytes
> Throughput about 270 cycles / byte

> Still a bit difficult to compare those numbers with SHA-3
due to the lack of available literature.

21IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Concluding Remarks and Open Questions

> Design still very preliminary
> Work in progress

> Almost no security analysis
> Resistance to collision attacks still to be assessed
> Interaction between IDEA multiplication weak values and
the key-schedule have still to be seriously assessed

22IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

THANK YOU !

23IDEA - Past, Present, Future - ESC’10 - January 14, 2010, Remich (Luxembourg)

