IDEA Past - Present - Future

Pascal Junod (joint work with Marco Macchetti, Nagravision SA)

ESC'10 - January 14, 2010 Remich (Luxembourg)

Outline

DEAWIDEAHIDEA

IDEA // A Bit of History

- > Block cipher designed by Lai and Massey in 1990 on behalf of Ascom AG
- > 64-bit block, I 28-bit key
- > Very simple philosophy
 - > Mix three different and algebraically incompatible group laws on 16-bit words
 - > \oplus ... addition over $(\mathbb{Z}/2\mathbb{Z})^{16}$
 - > \boxplus ... addition over $\mathbb{Z}/(2^{16}\mathbb{Z})$
 - > \odot ... multiplication over $\mathbb{Z}_{2^{16}+1}^*$
- > Simple, fully linear bit-selecting key-schedule algorithm
- > Quite popular during the 90's thanks to PGP
- > Mostly used today as a LUF (Legally Unclonable Function)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA // Current Security Level

> Designed to resist differential cryptanalysis

> Extensively cryptanalyzed

> More than 15 published paper so far

> As of today, the best attack by Sun and Lai [SunLai09] breaks 6 out of 8.5 rounds with help of 2^{49} chosen plaintexts and $2^{112.1}$ encryption operations (in a classical scenario) > Virtually all the attacks largely exploit properties of the fully linear key scheduling

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[9611]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

Round <i>i</i>	$Z_1^{(i)}$	$Z_2^{(i)}$	$Z_3^{(i)}$	$Z_4^{(i)}$	$Z_5^{(i)}$	$Z_6^{(i)}$
1	$Z_{[015]}$	$Z_{[1631]}$	$Z_{[3247]}$	$Z_{[4863]}$	$Z_{[6479]}$	$Z_{[8095]}$
2	$Z_{[96111]}$	$Z_{[112127]}$	$Z_{[2540]}$	$Z_{[4156]}$	$Z_{[5772]}$	$Z_{[7388]}$
3	$Z_{[89104]}$	$Z_{[105120]}$	$Z_{[1218]}$	$Z_{[924]}$	$Z_{[5065]}$	$Z_{[6681]}$
4	$Z_{[8297]}$	$Z_{[98113]}$	$Z_{[1141]}$	$Z_{[217]}$	$Z_{[1833]}$	$Z_{[3449]}$
5	$Z_{[7590]}$	$Z_{[91106]}$	$Z_{[107122]}$	$Z_{[12310]}$	$Z_{[1126]}$	$Z_{[2742]}$
6	$Z_{[4358]}$	$Z_{[5974]}$	$Z_{[100115]}$	$Z_{[1163]}$	$Z_{[419]}$	$Z_{[2035]}$
7	$Z_{[3651]}$	$Z_{[5267]}$	$Z_{[6883]}$	$Z_{[8499]}$	$Z_{[12512]}$	$Z_{[1328]}$
8	$Z_{[2944]}$	$Z_{[4560]}$	$Z_{[6176]}$	$Z_{[7792]}$	$Z_{[93108]}$	$Z_{[109124]}$
9	$Z_{[2237]}$	$Z_{[3853]}$	$Z_{[5469]}$	$Z_{[7085]}$		

IDEA // Philosophy Recycling

> On May 16th, 2011, IDEA will fall into the public domain
> The «IDEA way» to build a cipher looks like to be valid in terms of security
> Existing derivates (like MESH ciphers) are not very competitive in terms of speed
> Can we recycle this approach to design something new and fast, with a look at hash functions and authenticated encryption ?

IDEA // A Fast Implementation

- > Implementation of 8-way IDEA on the x86_64 architecture using the SSE2 instruction set [JunMac09] running at 5.4 clocks/byte on an Intel Core2 CPU > Motivated the design of WIDEA-8
 - > Block cipher with 512-bit block size, 1024-bit key size
 - > Fully respect the IDEA philosophy
 - > New key-schedule
 - > Keep highest possible parallelism
 - > Inherit all the good security properties of IDEA

Outline

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Optimal Cross-Diffusion

- > Diffusion across the 8 instances through a GF(2)-linear (8,8)-multipermutation over $GF(2^{16})$
- Only «sequential» step in the whole cipher
 But it is still possible to perform some of the operations in parallel

- > Non-linear feedback shift register
- > Fast diffusion (full diffusion after 3 rounds of WIDEA)
- >Asymmetry brought through iteration-dependent constants
- > Design similar to the Rijndael key-schedule algorithm

$$Z_{i} = K_{i} \qquad 0 \le i \le 7$$

$$Z_{i} = ((((Z_{i-1} \oplus Z_{i-8}) \stackrel{16}{\boxplus} Z_{i-5}) \stackrel{16}{\lll} 5) \lll 24) \oplus C_{\frac{i}{8}-1} \qquad 8 \le i \le 51, 8 \mid i$$

$$Z_{i} = ((((Z_{i-1} \oplus Z_{i-8}) \stackrel{16}{\boxplus} Z_{i-5}) \stackrel{16}{\lll} 5) \lll 24) \qquad 8 \le i \le 51, 8 \nmid i$$

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

WIDEA // Security Considerations

> Two sequential operations are always algebraically incompatible

> Thanks to the MDS matrix, we get full diffusion after a single round

- > Total of eight full diffusion
- > More than most existing designs

> Differential, linear and integral properties expected to behave the same way than for IDEA

> The new non-linear key-schedule further strengthen the design

WIDEA // Implementation

> WIDEA-8 is fully specified in the FSE'09 paper

- > Implemented as a compression function
 - > Davies-Meyer mode
 - > Merkle-Damgard scheme
 - > SSE3 instruction set on an Intel Core 2
 - > 5.98 clocks / byte

> Fill the gap from the compression function to a full-flavored hash function

> HIDEA

Outline

> IDEA >WIDEA > HIDEA

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Introduction

> FSE'10 anonymous reviewer comment

However, given where we are with SHA-3, the authors should provide better justification for why we need yet another hash function proposal.

> Main goals

- > Recycle the «IDEA philosophy»
- > Get a new toy to play with

> Propose a somewhat alternative design to the manyiterations-of-a-light-function approach

HIDEA // Basics

- > HIDEA (= «Hash» based on IDEA)
- > Design relies on Biham and Dunkelman's HAIFA framework > Two instances
 - > HIDEA-256
 - > 256-bit digest
 - > 128-bit salt
 - > 64-bit counter
 - > 10.5-round WIDEA-4 as compression function
 - > HIDEA-512
 - > 512-bit digest
 - > 256-bit salt
 - > 128-bit counter
 - > 10.5-round WIDEA-8 as compression function

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Counter Inclusion

> Cross-diffusion involves also the counter value:

$$Y = \text{MDS}(X) = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} = \begin{pmatrix} 0x1 & 0x1 & 0x4 & 0x1 & 0x8 & 0x5 & 0x2 & 0x9 \\ 0x9 & 0x1 & 0x1 & 0x4 & 0x1 & 0x8 & 0x5 & 0x2 \\ 0x2 & 0x9 & 0x1 & 0x1 & 0x4 & 0x1 & 0x8 & 0x5 \\ 0x5 & 0x2 & 0x9 & 0x1 & 0x1 & 0x4 & 0x1 & 0x8 \\ 0x8 & 0x5 & 0x2 & 0x9 & 0x1 & 0x1 & 0x4 & 0x1 \\ 0x1 & 0x8 & 0x5 & 0x2 & 0x9 & 0x1 & 0x1 & 0x4 \\ 0x4 & 0x1 & 0x8 & 0x5 & 0x2 & 0x9 & 0x1 & 0x1 \\ 0x1 & 0x4 & 0x1 & 0x8 & 0x5 & 0x2 & 0x9 & 0x1 \\ 0x1 & 0x4 & 0x1 & 0x8 & 0x5 & 0x2 & 0x9 & 0x1 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} \oplus C$$

$$Y = \text{MDS}(X) = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0x2 & 0x3 & 0x1 & 0x1 \\ 0x1 & 0x2 & 0x3 & 0x1 \\ 0x1 & 0x1 & 0x2 & 0x3 \\ 0x3 & 0x1 & 0x1 & 0x2 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \oplus C$$

IDEA - Past, Present, Future - ESC'10 - January 14, 2010, Remich (Luxembourg)

HIDEA // Seed Inclusion

Seed is handled as a round subkey and included using the
Image: Operation

$$\begin{array}{rcl}
Z_{6i} &= & K_{5(j-1)} \\
Z_{6i+1} &= & S_0 \text{ and } Z_{6i+2} = K_{5(j-1)+1} \text{ if } j \equiv 1 \pmod{2} \\
Z_{6i+1} &= & K_{5(j-1)+1} \text{ and } Z_{6i+2} = S_1 \text{ if } j \equiv 0 \pmod{2} \\
Z_{6i+3} &= & K_{5(j-1)+2} \\
Z_{6i+4} &= & K_{5(j-1)+3} \\
Z_{6i+5} &= & K_{5(j-1)+4}.
\end{array}$$

HIDEA // Number of Rounds

> Compared to WIDEA which uses 8.5 rounds, we added two additional rounds

> Invest two full rounds to inject the seed

> We still keep rather good performances on high-end CPUs (Xeon CPU, end-of-2009 eBASH numbers)

Hash function	Speed (clock cycles / byte)
BMW-512	4.75
Skein-512	6.63
CubeHash8/32	6.70
HIDEA-512	7.65
Shabal-512	8.31
BMW-256	9.32
BLAKE-32	10.39
SIMD-256	12.87
Keccak	13.55
SHAvite-3	27.82
Grostl-512	30.11
Fugue-256	26.41
Hamsi	31.28
$\overline{\text{ECHO-256}}$	36.35

HIDEA // Number of Rounds

> Compared to WIDEA which uses 8.5 rounds, we added two additional rounds

> Invest two full rounds to inject the seed

> We still keep rather good performances on high-end CPUs (Xeon CPU, end-of-2009 eBASH numbers)

Hash function	Speed (clock cycles / byte)
BMW-512	4.75
Skein-512	6.63
CubeHash8/32	6.70
HIDEA-512	7.65
Shabal-512	8.31
BMW-256	9.32
BLAKE-32	10.39
SIMD-256	12.87
Keccak	13.55
SHAvite-3	27.82
Grostl-512	30.11
Fugue-256	26.41
Hamsi	31.28
$\overline{\text{ECHO-}256}$	36.35

HIDEA // ATMega 8-bit Microcontroller

> First (rather unoptimized) implementation of HIDEA-256 on ATMega 128

- > Code segment size: less than 2 kB
- > SRAM usage: 138 bytes
- > Throughput about 270 cycles / byte

> Still a bit difficult to compare those numbers with SHA-3 due to the lack of available literature.

HIDEA // Concluding Remarks and Open Questions

- > Design still very preliminary
- > Work in progress
 - > Almost no security analysis
 - > Resistance to collision attacks still to be assessed
 - > Interaction between IDEA multiplication weak values and
 - the key-schedule have still to be seriously assessed

THANKYOU!