Implementation of a O(na(n)log(n)) Point
Visibility Algorithm on Digital Terrain Models

Pascal Junod, pascal. junod@switzerland.org

October 1999

Contents

1

2

Acknowledgments
Introduction

Theoretical Background

3.1 Digital models of a terrain

3.2 Visibility problems on terrains

3.3 Concept of horizon

3.4 Existing algorithms for point visibility
3.4.1 A brute-force approach
3.4.2 An O(na(n)logn) algorithm

Description of the Algorithm

4.1 Introduction

4.2 Topological sorting of the edges

4.3 A divide-and-conquer approach
4.3.1 Thedividepart L.
4.3.2 Theconquerpart

Implementation and Integration in the RA3DIO project
5.1 Problems and solutions
5.2 The final version of our algorithm
5.2.1 Implementation of the divide phase
5.2.2 Implementation of the conquer phase
5.3 The integration in a patch environment
5.4 Description of the classes and methods
5.4.1 The CEventItemclass
5.4.2 The CHorizonItemclass
5.4.3 The CHorizonclass
5.4.4 The PatchPreprocess() method

Results
6.1 Time complexity
6.2 Comparison between the three algorithms

Conclusion

13
13
14
14
15
15

20
20
21
21
22
26
27
28
28
28
29

30
30
32

33

List of Figures

0 3 O Ui W N =

I e S S S Gy ey g o T 0=
© 00 3O Ui W N+ O

The spherical coordinates system 8
Example of an horizon oo 10
The ray-shooting problem 11
The upper envelope of a set of segments in the plane 13
Definition of the distance partial order 15
IMustration of the divide phase 16
Ilustration of the conquer phase 16
Case of an intersection 17
Case of the right endpoint of the upper segment 18
Case of the right endpoint of the lower segment 18
Case of the left endpoint of a new lower segment 19
Case of the left endpoint of a new upper segment 19
The two partial horizons are not defined over the same interval 20
The “hole-edges” solution 21
The jump-problem, 22
The subdivision of the terrain in patches 26
The processing order in a patches environment 27
Handling of normal horizons and “cut” horizons. 28
The “radial distance” 30

to Mimi

1 Acknowledgments

First of all, I would thank Stefan Eidenbenz for introducing me into the
world of digital terrains and for having proposed me to do a semester thesis
in this field.

I would thank Christoph Stamm, which was my supervisor, for supporting
me, for answering all my dummy questions, for motivating me to write so
much lines of code and naturally for trying to understand my bad German.

2 Introduction

Describing a terrain through visibility information, such as, for instance,
the points of the terrain which are visible from a selected viewpoint, has
a variety of applications. For example, the computation of the number of
observation points needed to view an entire region, or the computation of op-
timal locations for radio transmitters are possible and practical applications.

More recently, the need for interactive tools for managing mobile telecom-
munications network systems gives more interest to this field, because the
propagation of the waves with a frequency of about 1 GHz can be well ap-
proximated by using line-of-sight models. Using such models combined with
wave propagation models, such as the Okumura/Hata propagation for ultra
high frequencies one, allows very good approximations.

Different approaches to compute point visibility in digital terrains have been
presented in the scientific literature. In this semester thesis, we have devel-
oped and implemented a fast algorithm by using different ideas which were
proposed in the last decade, and by modifying an existing algorithm.

The implementation of the algorithm has been designed to be integrated in
the RA3DIO project (see [7] for further details on this project); RA3sDIO
is a virtual reality tool developed at the ETHZ that supports the design, the
optimization and the management of mobile telecommunications networks.

This semester thesis is organized as follows: first, we present the theo-
retical background needed to understand the algorithm, and the existing
solutions. Then, in a next section, we describe our algorithm, together with
the modifications needed for its integration in the RA3DIO project. In the
last section, we present the practical results, together with propositions of
possible improvements.

3 Theoretical Background

In this section, we introduce some basic notions about Digital Terrain Mod-
els, about the definition of the point visibility problem and about the existing
solutions.

3.1 Digital models of a terrain

A natural terrain can be described as a continuous function z = f(z,y), de-
fined over a simply connected subset D of the horizontal x — y-plane. Thus,
a Mathematical terrain Model (MTM), that we can simply call a terrain,
can be defined as a pair M := (D, f).

The notion of digital terrain model characterizes a subclass of the math-
ematical terrain models which can be represented in a compact way, using
a finite number of data. We can now define the concept of Digital Terrain
Model (DTM) as follows:

Definition 1 (Digital Terrain Model (DTM))

Let be ¥ a plane subdivision of the domain D into a collection of plane
regions R = {Ry, R, ..., Ry, }. Let be F a family of continuous functions
z = fi(x,y) for i = 1,2,...,m each defined on R; such that on the common
boundary of two adjacent regions R; and R;, f; and f; assumes the same
value. Then a DTM can be expressed as a pair D := (X, F).

DTMs can be classified into Regular Square Grids (RSGs) and Polyhedral
Terrain Models. In a RSG, the domain subdivision is a rectangular grid,
while each function f; is a piecewise linear, quadratic or cubic function ob-
tained by linear interpolation along the edges of the subdivision. PTMs
are characterized by a domain subdivision consisting of a straight-line plane
graph and by linear interpolating functions.

RSGs are usually built from a finite set of data points P; = (x4, v, 2i)
defining the terrain, are often used to describe gridded data are internally
represented by arrays. The model of terrain used in the RA3DIO project
can be viewed as a polyhedral one.

3.2 Visibility problems on terrains
We present here the common terminology used in the visibility problems on

terrains.

Given a mathematical terrain model M = (D, f), a candidate point is
any point P = (z,y,z) belonging to or above the terrain, or more for-
mally, such that (z,y) € D and z > f(z,y). We say that two candi-

Figure 1: The spherical coordinates system

date points P; and P, are mutually visible if and only if, for every point
Q= (z,y,z) =tPy+ (1 —t)P, with 0 <t < 1 and z > f(x,y). In other
words, two points are mutually visible when the straight-line segment join-
ing these two points lies above the terrain, and it touches it at most at its
two extremes.

An observation point (or viewpoint) is any arbitrarily chosen candidate
point, and a wisual ray is any ray emanating from a viewpoint. Given a
viewpoint V and a spherical coordinates system centered at V', a visual ray
r is identified by the pair (6, «), called a view direction (see Figure 1).

It is possible to classify visibility problems (see [4]) on a terrain on the basis
of the dimensionality of their output information into point, line and region
visibility problems. Point visibility problems compute the set of points,
chosen in a candidate set, visible from a predefined observation point; line
visibility problems compute curves on the terrain with special visibility char-
acteristics with respect to an observation point, such as the computation of
an horizon line, for example. And finally, region visibility problems consist
of the determination of portions of the terrain visible from an observation
point.

We use in this semester thesis a algorithm designed for solving a line vis-
ibility problem to compute an horizon line, and then for determining the
visibility of the set of candidate points with the help of its horizon line.

3.3 Concept of horizon

A line visibility problem of practical relevance in geographic applications
consists of computing the horizon of an observation point on a terrain.

Definition 2 (Horizon)

Given a terrain M = (D, f) and a viewpoint V, the horizon of the terrain
with respect to V' is a function o = h(6), defined for 6 € [0, 27|, such that,
for every radial direction 0, h(0) is the maximum value « such that each ray
emanating from V with a direction (0, 3), with > «, does not intersect
the terrain.

Or in other words, this definition corresponds to the intuitive notion that
the horizon of the terrain provides, for each radial direction, the minimum
elevation which must have a visual ray emanating from the viewpoint in the
given direction to pass above the surface of the terrain.

In a polyhedral terrain, the horizon is a radially sorted list of labeled in-
tervals [0, 02]. If an interval [0;, 0] has label [, then the visual ray defined
by a direction (6, f(0)) with 6; < 6 < 09 hits the terrain at a point belonging
to edge [. See Figure 2 for an example of horizon.

3.4 Existing algorithms for point visibility

Point visibility computations can be reduced to determine the mutual visi-
bility of two candidates points. We present in this part first a “brute-force”
approach, and then a faster approach.

3.4.1 A brute-force approach

To compute the discrete visibility region of a point of view V with respect
to the set S of points, we need to determine the mutual visibility of V' and
the points belonging to S. To solve this problem, we can apply an algorithm
which tests the mutual visibility of each pair (V, P), whereP belongs to S,
with a computational cost of O(n?), where n denotes the cardinality of the
set of points.

Given a DTM D = (X, F') as defined in the previous section, and two can-
didate points P; and P» on D, the mutual visibility of P; and P» through a
“brute-force” approach reduces to compute the intersection of the projection

+w2

il

Figure 2: Example of an horizon

on the = — y-plane of segment s = P; P,, denoted 5, with the edges of ¥. At
each intersection point P between s and an edge e of X, we test whether s lies
above the edge of D corresponding to e. If s is above the corresponding ter-
rain edge at any such intersection point, then P; and P» are mutually visible.

In general, this process has a linear time complexity, in the worst case, in the
number of edges of D, which is O(n), where n is the number of vertices of D.

For a regular square grid, the time complexity reduces to O(y/n), by using
properties of such a kind of terrain. These two kinds of algorithms, which
are quite simpler to implement, are used to compare their performances with
these of the non-trivial algorithm which we will present.

3.4.2 An O(na(n)logn) algorithm

The second approach preprocesses the terrain model with respect to the
viewpoint V', and builds a data structure on which the problem of comput-
ing the visibility of a point P can be solved in logarithmic time. We explain
here how this approach is functioning, and then we will see that we can
simplify this algorithm for our purposes.

10

3
Bz i I."ll

Figure 3: The ray-shooting problem

Despite the “brute force” method described above, this algorithm requires
a polyhedral terrain model. The data structure has been proposed by Cole
and Sharir in [2]. It has be designed to solve the problem of ray-shooting on
a polyhedral terrain model (see Figure 3):

Definition 3 (Ray-shooting problem)

Given a polyhedral terrain D, a viewpoint P and a view direction (0, «),
the ray-shooting problem consists of determining the first face of D hit by
a ray emanating from V with direction (0, «).

The mutual visibility of two points V' and P reduces to solve a ray-shooting
problem, since we have just to consider as view direction the one defined
by the segment V P and, when the first face of D hit by the corresponding
visual ray has been obtained, we have just to determine whether P and V'
lie on the same or on the opposite side of the plane of such a face (as rep-
resented in Figure 3).

The data structure of Cole and Sharir, called an horizon tree, has size
O(na(n)logn), where a(n) is the inverse Ackermann’s function, which can
be considered in practice as a constant. Ray-shooting queries can be an-
swered in time O(logZn) on such a structure. A necessary condition on
the polyhedral terrain is that it has to be possible to sort the edges using
a partial distance order. More in this subject is coming with the next section.

The horizon tree is a balanced binary tree with a depth which is logarithmic
in the number of terrain edges. In this tree, every node corresponds to a

11

subset of edges and stores a partial horizon; the root corresponds to the
whole set of edges of the terrain. Each left child corresponds to the half of
the edges associated to its parent, that are closest to the viewpoint V', and
each right child corresponds to the remaining half. Every node of the tree
stores the partial horizon computed on the edges associated with the left
child of the node.

This horizon tree can be computed in optimal O(na(n)logn) time, since
each partial horizon can be computed by a single application of the algo-
rithm of Atallah (see [1]) for determining the horizon of a viewpoint on a
polyhedral terrain. A complete description of the algorithm of Atallah is
done in the next section. For further information about the Cole-Sharir
data structure and its use, [4] is a good introduction.

A serious analysis of this method has shown that we can already extract
the needed information (visibility of the candidate points) in the building
phase of this Cole-Sharir data structure. In other words, we don’t need to
solve a ray-shooting problem for computing the visibility of the candidate
point. So we don’t need for our purposes the query phase. This fact is
easily understandable, because we don’t need the whole information, like
the face hit by the visual ray, for example. Furthermore, such a structure
is appropriate to compute the visibility of points which are not parts of the
terrain. This is not a need in our case.

In the next section, we show how to modify this method to extract the

needed information. Furthermore, a complete description of the Atallah
algorithm is done. Last, we present our simplified algorithm.

12

Figure 4: The upper envelope of a set of segments in the plane

4 Description of the Algorithm

In this section, we present our algorithm for computing point visibility on a
polyhedral terrain.

4.1 Introduction

As described in the previous section, we use a line visibility algorithm to
compute the horizon with respect to the viewpoint V. During the build
phase of the horizon, it is possible to extract the needed information, i.e. to
know if a point is visible or not.

The computation of the horizon of a viewpoint on a polyhedral terrain re-
duces to the computation of the upper envelope of a set of segments in the
plane.

Definition 4 (Upper envelope of a set of segments in the plane)
Given p segments in the plane, i.e. p linear functions y = f;(x) with
i = 1,...,p, each defined on an interval [a;, b;|, the upper envelope of such
segments is a function y = F(x), defined over the union of the intervals
[ai, bi], and such that F(z) = max;|,¢[q,) fi(T)

Or, in other words, the upper envelope maps any x value in the segment
having maximum y value over z, if such a segment exists. Figure 4 shows

13

an example of such an upper envelope of a set of segments.

To reduce the horizon on a polyhedral terrain to the upper envelope of
a set of segments, we can express the edges of the terrain in the spherical
coordinates system centered at the viewpoint defined in the previous sec-
tion. Note that we consider only the two angular coordinates 6 and «. So
we lose information, since two points on the same ray emanating from the
viewpoint have the same coordinates. But if the edges are sorted using a
distance order, as we will see it later, this information get not lost.

It has been shown in [3] that the complexity of the upper envelope of p
segments in the plane is O(pa(p)), and thus, the complexity of the horizon
of a polyhedral terrain with n vertices is O(na(n)). There is different pos-
sibilities to compute the envelope of p segments in the plane; either with
the help of a static divide-and-conquer approach leading to a O(pa(p) log p)
worst-time case complexity, like the Atallah algorithm ([1]), or with the help
of a dynamic, incremental one, with a complexity of O(p?a(p)). In [4], such
an incremental method is presented, as well as a randomized version, which
has a time complexity of O(pa(p)log p), too.

4.2 Topological sorting of the edges

As written before, we need to sort the edges using the following partial
distance order

Definition 5 (Distance partial order)

Given a plane subdivision ¥ and a point O in the plane, an edge ey of ¥ is
said to be before an edge e (and es behind ey) with respect to O if and only
if there exists a ray r emanating from O and intersecting both e; and es,
such that the intersection of r and e; lies nearer to O than the intersection
of r and es.

Figure 5 illustrates this definition. We note that this order relation is only
defined if there is an intersection between the ray and both edges. By using
the dual graph of the polyhedral terrain, it is possible to sort the set of
edges. This set will be the input of our algorithm.

4.3 A divide-and-conquer approach

The principle of the algorithm is the following: it recursively splits the set
of segments into two halves, and pairwise merges the results. Merging two
envelopes is performed through a sweep-line technique for intersecting two
chains of segments.

If the process is done for the farthest edges first and then is coming to

14

(N S |

a<b<c d<e f<g<h

Figure 5: Definition of the distance partial order

the nearest, it is possible to know if a point is invisible. As a matter of fact,
while merging two horizons, one nearer and one farther, if a vertex of the
farther horizon is under the nearer horizon, then this vertex is invisible, and
we can note this fact. We can remark that we can only know if a point is
visible while the last merge operation, and this if this point is not marked
as an invisible one. So, we mark all the points as visible at the begin of
the horizon computation and following the merging process, we mark the
invisible points.

4.3.1 The divide part

This part is the easily one. At the begin, as written before, the algorithm
gets an array of sorted edges, which it will consider as an array of one-piece
horizons. Then, it will merge these horizons two by two to get finally the
searched horizon. This is illustrated in Figure 6.

4.3.2 The conquer part

We present here the “academic” version of this algorithm. The version which
we have implemented, as well as the changes we have done will be presented
in the next section. To merge two horizons, as in Figure 7, the Atallah algo-
rithm uses a sweep-line technique implemented with the help of an event list.
The sweep-line algorithm moves an imaginary vertical line r from the left

15

Figure 6: Illustration of the divide phase

Figure 7: Illustration of the conquer phase

16

to the right in such a manner that at each step the resulting upper envelope
restricted to the left half-plane of r has already been computed, while in
the right half-plane, it is still to be determined. The events are represented
by the vertices of the two input envelopes, plus the possible intersection
points between them. The current status of the sweep-line is represented by
the pair of segments, one each partial envelope, that are intersected by the
sweep-line, ordered according to their heights.

There is five possible kinds of events. We list them here, as well as the
necessary update operations needed for the resulting envelope. We use the
following colored notation for the illustrations: a blue segment is part of the
farther horizon, while a red one is part of the nearest horizon. The green
segment is the updated part of the resulting envelope. The sweep line is the
brown vertical line, while the last position of this sweep line is the brown
dashed line.

e If the event is an intersection point of two segments (Figure 8), then
the current segment in the sweep line status are swapped. The result-
ing envelope is updated. In this case, there is no importance in the
distance of the horizons.

Figure 8: Case of an intersection

e If the event is a right endpoint of a segment and if this segment is the
actual upper segment (Figure 9), then the interval between the last
event and the current one is inserted in the resulting envelope.

e If the event is a right endpoint of a segment and if this segment is the
actual lower segment (Figure 10), then this segment leaves the status;
furthermore, if this segment belongs to the farther horizon as in Figure
10, then its right endpoint can be marked as invisible.

e If the event is a left endpoint of a new segment on one of the partial
envelopes, then this segment is inserted in the current status (Figure

17

\/

"~
g

Figure 9: Case of the right endpoint of the upper segment

—
/’

Figure 10: Case of the right endpoint of the lower segment

11), in this case as the lower edge. Furthermore, if the new segment
belongs to the farther partial horizon, as in Figure 11, its left endpoint
can be marked as invisible. The intersection between the new pair of
status segments is also tested and eventually inserted in the event
queue.

If the event is a left endpoint of a new segment on one of the partial
envelopes, then this segment is inserted in the current status, in this
case as the upper edge (Figure 12). The intersection between the new
pair of status segments is tested and eventually inserted in the event
queue.

Figure 11: Case of the left endpoint of a new lower segment

Figure 12: Case of the left endpoint of a new upper segment

19

+w2

—ml2

Figure 13: The two partial horizons are not defined over the same interval

5 Implementation and Integration in the RA3DIO
project

In this section, we present first two problems which were not documented in
the “academic” version, together with the solutions we have chosen to solve
these problems. Then, we give our algorithm in a pseudo-code notation.
The integration of this algorithm in a real project has brought some other
difficulties, which we present next. Finally, we make a brief presentation of
the implementation, together with some comments when needed.

5.1 Problems and solutions

The algorithm of Atallah, as presented in [4], is designed for “friendly” par-
tial horizons, which begin and end both at the same points and continuous.
This is naturally not the case in a real-world application. A first problem
was to find an acceptable solution in the cases where a partial horizon is
not defined, as illustrated in Figure 13. The solution we chose is the follow-
ing: everywhere where the horizon is not defined, we insert an horizontal
hole-edge, with an « set to an impossible value, —2 in our implementa-
tion. So the horizons are all defined over the interval [0, 27], and holes are
treated as they were horizons parts. This solution is illustrated in Figure 14.

Another problem which happens in a real-world application is the possi-

20

+w2

-2

Figure 14: The “hole-edges” solution

bility that the partial horizons are not continuous, in the sense that the
right endpoint of a segment and the left endpoint of the next segment have
not the same a-value, as illustrated in Figure 15. Or, in other words, we
have to keep our algorithm robust even if there is jumps in the partial hori-
zons. The problem is the situation where an edge of the other partial horizon
passes through this kind of jump. In this case, we have sometimes to insert
a new part in the resulting envelope and to modify the internal status of the
sweep line.

5.2 The final version of our algorithm

We give here the pseudo-code (in a C++-like notation) version of our algo-
rithm.

5.2.1 Implementation of the divide phase

For efficiency purposes, we have chosen to implement the recursion in an
iterative way. Since we cannot expect that the number of edges is a power
of two, we merge first a part of the array of edges, which are topologically
sorted, to reduce the size to the greatest power of two which is smaller than
this number of edges. Then, we can use a simple loop to merge the resulting
horizons in a tree-like structure. This is illustrated in Algorithm 1. We
recall that we have to do the merge operations for the farther horizons first

21

+w2

—wl2 ¥

Figure 15: The jump-problem

and at last for the nearest ones, so we don’t forgive invisible vertices. The
farthest edge is stored in the first case of the array, while the nearest one is
stored in the last case.

5.2.2 Implementation of the conquer phase

The conquer phase is by far the most complex operation in the algorithm.
This procedure first builds the event list, and then processes the events, up-
dating the resulting envelope when needed. It is naturally in this procedure
that the invisibility of some vertices is determined. The pseudo-code version
of this procedure is in Algorithm 2 and the end is in Algorithm 3.

22

Algorithm 1 Implementation of the divide phase

// int n number of edges
// int m greater power of two which is smaller as n
// int i, j ... temporary variables

// Reduction of the array to an array with a length
// which is a power of 2. To do this, we merge some
// horizons.

Jj = 2*m-n;

for(i = 2*m-n; i < n-1; i+=2) {
array[j] = array[i+1].Merge(arrayl[i]);
jtts

// Merging of the whole array.

i= 0;
while (m > 2) {
j=0;
while (i < m) {
array[j] = array[i+1].Merge(array[il);
i += 2;
jtts

// Last merge operation

resulting_horizon = arrayl[1].Merge(array[0]);

23

Algorithm 2 Implementation of the conquer phase (1)

// Building of the event list for the farther
// partial horizon.

forall(segment
insert a in
insert b in
}
forall(segment
insert a in
insert b in
}
status.inf
status.sup

[a, b] in
eventList
eventList

[a, b] in
eventList
eventList

UNDEFINED;
UNDEFINED;

lastEvent = 0.0;

// Main loop

farHorizon) {
marked as LEFT_ENDOINT;
marked as RIGHT_ENDPOINT;

nearHorizon) {
marked as LEFT_ENDOINT;
marked as RIGHT_ENDPOINT;

while(eventList.notEmpty()) {
= eventList.nextEvent();
switch(e.eventType()) {

currentEvent

case INTERSECTION:
insert [lastEvent, currentEvent] in
the resulting envelope with label

status.sup;
lastEvent = currentEvent;
Swap(status.inf, status.sup);

break;

case RIGHT_ENDPOINT:
if (currentEvent right endpoint
of status.sup) {
insert [lastEvent, currentEvent] in
the resulting envelope with label
status.sup;
lastEvent =
status.sup = status.inf;
status.inf = UNDEFINED;
} else {

currentEvent;

24

Algorithm 3 Implementation of the conquer phase (2)

if (status.inf belongs to farHorizon) {
mark right endpoint of status.inf
as invisible;
b
status.inf = UNDEFINED;
} // end of else
break;
case LEFT_ENDPOINT:
snew = segment whose left endpoint is
currentEvent;
if (snew over status.sup) {
status.inf = status.sup;
status.sup = snew;
if (jump_situation) {
insert missing part in the resulting
envelope;
} else {
if (status.inf belongs to farHorizon) {
mark left endpoint of status.inf
as invisible;
3
status.inf = snew;
X
if (status.sup and status.inf intersect) {
(x, y) = intersection point;
insert x in eventList, marked as
INTERSECTION;
b
break;
} // end of switch statement
} // end of while

25

Figure 16: The subdivision of the terrain in patches

5.3 The integration in a patch environment

In the RA3DIO project, the terrain is subdivided in small pieces, which are
easier to load and to display than the whole terrain. Such a small piece of
terrain is called a patch. Each patch is a square and has about 3000 edges
in the actual configuration. We can use the presented algorithm to compute
the horizon line and for determining the (in-)visibility of the points, but if
we have to compute the visibility of points which are not in the same patch
as the viewpoint, the task becomes more difficult.

The situation is illustrated in Figure 16. For example, to compute the
horizon line of the patch number 2, we have first to compute the internal
horizon line of the patch, and then to merge this horizon line with the por-
tion of the horizon of the patch number 1 delimited by the « value, or, in
other words, with the north side of the central patch.

In a more complicated manner, the computation of the visibility of the
points in the patch number 8 needs the following operations: first we have
to compute the internal horizon line and then to merge this horizon with
the 8 portion of patch number 5 and with the v portion of patch number 4.

26

Figure 17: The processing order in a patches environment

Thus, for computing the visibility of the points in a 3x3- or a 5x5-grid
of patches, they must be preprocessed in a way, such that the horizons are
available when needed. This gives us the processing order illustrated in Fig-
ure 17. To merge the southern part of the horizon line of patch number
5 with the eastern one of patch number 4, we have just to append these
two horizons. But for computing the horizon line of patch number 6, the
operation is more complicated, because the patch is “cut” by the x-axis. So,
in this kind of situation, we have to treat these horizons in a special way.
These two situations are summarized in Figure 18.

5.4 Description of the classes and methods

In this part, we present briefly the three new classes which were inserted in
the RA3DIO project. The algorithm has been implemented in C++. The
LEDA library (see [5] for a description) has been employed for the com-
mon data structures. During the development time, [6] has been used as a
reference book.

27

Figure 18: Handling of normal horizons and “cut” horizons

5.4.1 The CEventItenm class

The CEventItem class defines the properties of the events which are used
during the merge procedure. The main goal of this class is to store informa-
tion needed by the algorithm for its (imaginary) sweep line. The methods
are all procedures which permit to read and to set the class variables.

5.4.2 The CHorizonItem class

An horizon is in fact a list of CHorizonItems, which can be viewed as the
segments in an horizon. Again, the methods are all procedures which permit
to set and to read the class variables.

5.4.3 The CHorizon class

This class is by far the most complicated and the most interesting one. It
models the concept of an horizon line. The CHorizon class is a subtype of
a LEDA double-linked list. It has the following methods:

e CHorizon(CHorizonItem& horizonItem) is a constructor used to build
an horizon object with a single horizonItem object. It is used to

28

transform a set of edges in a list of one-piece horizons, inserting the
necessary holes.

e CHorizon(leda_list<CHorizonItem>& array, CTransmitter* tx,
CPatch *patch, CHorizon& horizon = CHorizon()) is a construc-
tor used to build a new horizon. It computes the internal horizon line,
and if needed, merges this new horizon line with the one stored in the
input variable horizon. The implementation of the divide phase is
done in this method.

e CHorizon Merge(CHorizon& horizon, double leftLimit, double
rightLimit, bool last) is the conquer part of the algorithm. For
efficiency reasons, Merge () takes an interval as input and merges the
two partial horizons only between these two values, which considerably
reduces the number of events in the most number of the cases.

e bool Over(const leda segment sinf, const leda segment ssup,
double x) const decides whether an edge is over another, in an hori-
zon. Note that the decision is defined when the two edges are holes,
too.

5.4.4 The PatchPreprocess() method

void CWaveModelPointVis::PatchPreprocess(CTransmitter* tx,
CPatch* patch) is the method called by RA3DIO when the user puts a
viewpoint on the terrain. It is called in the good order, as defined in Figure
17. The following operations are done: it creates first a directed copy of
the (undirected) dual graph of the polyhedral terrain, then the topological
sorting of the triangle edges is done, it computes the visibility of all the
points, marks the invisible ones and merges the patches horizons, when
needed. Another method, while displaying the terrain, will test for each
vertex if it is visible or not.

29

Figure 19: The “radial distance”

6 Results

In this section, we present a little time complexity analysis, together with a
performance comparison between three point visibility algorithms.

6.1 Time complexity

As written before, the merge procedure has a time complexity of O(na(n)),
where n is the number of edges in a patch and a(n) the inverse Ackermann’s
function. For the central patch, we call this conquer procedure O(logn)
times, which gives us a time complexity of O(na(n)logn). Then, we have
to do an internal merge for each external patch; m being the number of
patches, it gives us a time complexity of O(m - na(n)logn).

Last but not least, we have to compute the time complexity of the merge
operations between patches. We englobe the preceding reflexions in our
analysis. For this purpose, let define the following variables:

e { for the “radial distance” of the patches, as illustrated in Figure 19.
e v for the number of internal patches

e ¢ for the number of border patches

30

e [for the maximal length of the horizon
e c for the average length of the horizon per border patch
e H for the time needed to compute the horizon

We have following values for these different variables:

il u | v |t l c H
1 1] 1 na(n) 1 1
2141115 5na(bn) 5/4 4.1=4
318 |5 13| 13na(13n) | 13/8 4.5/4+8-5/4=15
4|12 |13 |25/ 25na(25n) | 25/12 | 4-13/8+16-13/8 = 321
5116 | 25 | 41 | 41na(41n) | 41/16 | 4-25/12 + 24-25/12 = 581

We have the following equalities between these variables:

i—1
vi=14 u;j=2—6i+5
j=1

ti:ui+vi:2i2—2i—|—l
H; = uina(n)logn+4c;—1 + (u; —4) - 2-¢i—1 = uina(n) logn + 2¢;—1 (u; — 2)
We can approximate H; as follows:
H; = O(i)na(n)logn + 20(i — 1)na(O(i — 1)?n)(4i — 6)
which is finally
O(i)na(n)logn + 20(i*)na(i*n)

To get the final time complexity estimation, we have to sum these H;’s:

Z n)logn +O(i) - n - a(i*n)) + na(n) logn
=2

which gives us:
O(mna(n)logn + m*na(m?n))

We can remark that when the number of patches tends to the number of
edges pro patches, then our algorithm is not very interesting. This is not the
case in the reality, the number of patches being relatively small compared
to the number of edges in a patch.

31

6.2 Comparison between the three algorithms

We make now a comparison between the three algorithms presented in this
semester thesis. The two first are easily implementable and are available in
the RA3DIO project. We recall that the first one, which use a “brute-force”
strategy, has a complexity of O(m -n?). The second one, which uses specific
properties of polyhedral terrains, has a time complexity of O(m - n3/ 2). The
following table summarize time measures (in seconds) for the computation
of point visibility for different numbers of patches. The number of edges per
patch n is equal to about 3000.

| # patches | O(m-n?) | O(m-ny/n) | O(mna(n)logn + m*na(m?®n)) |

1 0.5 0.2 2.8
9 12.5 6.2 24.5
25 71.6 31.7 52.2
49 179.8 71.9 108.9
81 353.9 130.6 196.9

The first remark we can do is that the algorithm with a quadratic complex-
ity becomes fast the slowest one, and that it is not practical. Secondly, it is
clear that the second algorithm is faster than the third. We can understand
this fact as follows: the implementation of the second one is very simple and
thus the constant term is quite small, while our algorithm is quite compli-
cated. Therefore, the little number of edges per patch handicaps the relative
performance of the theoretical faster one.

Now, it is possible to improve its performances by many ways. First of all,
the divide-and-conquer strategy could allow a parallelization of the com-
putation of the horizon line. Then, it is always possible to improve the
performances by optimizing the code. But it is quite time consuming !

32

7 Conclusion

It is now time to conclude this semester thesis. We have developed and
implemented a (theoretical) fast algorithm for computing point visibility on
a polyhedral terrain. This algorithm has been integrated in the RAsDIO
project, which means that a lot of not documented problems have requested
robust solutions.

However, our algorithm is not faster than a more trivial one, which is better
for the parameters used in a typical RA3DIO utilization. This fact illus-
trates well the differences between a theoretical proposition and a practical
application of such a “fast” algorithm.

In a more personal way, I have enjoyed this work a lot, because it has
brought to me experience in programming in C++, as well in managing a
relative big implementation. Furthermore, it is quite interesting to work
in the border of the theory and the practice. Finally, I will keep excellent
memories of the house, of the little desk under the roof and of the life in a
little team.

33

References

1]

[7]

M. Atallah. Dynamic computational geometry. In Proc. 24th Symposium
on Foundations of Computer Science, pages 92-99. IEEE Computer So-
ciety, Baltimora, 1983.

Richard Cole and Micha Sharir. Visibility problems for polyhedral ter-
rains. Journal of Symbolic Computation, 7(1):11-30, January 1989.

H. Edelsbrunner. The upper envelope of piecewise linear functions: tight
bounds on the number of faces. Discrete and Computational Geometry,
4:337-343, 1989.

L. De Floriani and P. Magillo. Visibility algorithms on triangulated ter-
rain models. International Journal of Geographic Information Systems,
8(1):13-41, 1994.

Leda homepage : http://www.mpi-sb.mpg.de/LEDA.

Stanley B. Lippman and Josée Lajoie. C++ Primer, 8rd Edition. Addison-
Wesley, 1998.

The project homepage : http://www.ra3dio.ethz.ch.

34

