Statistical Cryptanalysis of Block Ciphers

Pascal Junod

Aussois (France), February 2nd, 2005

Outline

Statistical Cryptanalysis

- Linear Cryptanalysis of DES
- Statistical Modelization of Distinguishers

2 Generalized Linear Cryptanalysis

- Good Idea ?
- Link to χ^2 attacks

3 Summary

・ 同・ ・ ヨ・

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Cryptanalysis of Block Ciphers

- Most existing "generic" attacks against block ciphers are of statistical nature.
 - Differential cryptanalysis (and variants) [Biham-Shamir, 1990,...]
 - Linear cryptanalysis [Matsui, 1993]
 - Davies and Murphy's attack [Davies-Murphy, 1995]
 - χ^2 cryptanalysis [Vaudenay, 1996]
 - Partitioning cryptanalysis [Harpes-Massey, 1997]
 - Stochastic cryptanalysis [Minier-Gilbert, 2000]
- Focus is often put on the "deviant" property itself.

Statistical Cryptanalysis

Generalized Linear Cryptanalysis Summarv Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

In this Talk

Focus

In this talk, we are mostly interested in how it is possible to optimally exploit these deviant properties.

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Outline

Statistical Cryptanalysis

- Linear Cryptanalysis of DES
- Statistical Modelization of Distinguishers
- 2 Generalized Linear Cryptanalysis
 - Good Idea ?
 - Link to χ^2 attacks

3 Summary

(D) (A) (A)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Linear Cryptanalysis

- Matsui's attacks against DES (1993)
- \rightarrow First observations by Shamir/Franklin (1985)

Summarv

- ullet ightarrow Tardy-Corfdir and Gilbert's attack against FEAL (1991)
- First successful experimental attack against DES (Matsui, 1994)

Best Known Linear Approximation of 15-round DES

• The best known linear approximation on 15-round DES is

$$\begin{split} \textbf{x}_{l\{7,13,24\}} \oplus \textbf{x}_{r\{15,19\}} \oplus \textbf{y}_{l\{2,7,13,24\}} \oplus \textbf{y}_{r\{16\}} = \\ \textbf{k}_{\{24,28\}}^{(1)} \oplus \textbf{k}_{\{25\}}^{(3)} \oplus \textbf{k}_{\{3\}}^{(4)} \oplus \textbf{k}_{\{25\}}^{(5)} \oplus \textbf{k}_{\{25\}}^{(7)} \oplus \textbf{k}_{\{3\}}^{(8)} \oplus \textbf{k}_{\{25\}}^{(9)} \oplus \textbf{k}_{\{25\}}^{(11)} \oplus \\ \textbf{k}_{\{3\}}^{(12)} \oplus \textbf{k}_{\{25\}}^{(13)} \oplus \textbf{k}_{\{25\}}^{(15)} \end{split}$$

where $\mathbf{k}_{\{\mathcal{B}\}}^{(i)}$ denotes the set \mathcal{B} of the *i*-th round subkey. The above linear approximation holds with probability $\frac{1}{2} - 1.19 \cdot 2^{-22}$.

• We can write the linear approximation as $\mathbf{a} \cdot \mathbf{x} \oplus \mathbf{b} \cdot \mathbf{y} = \mathbf{c} \cdot \mathbf{k}$.

Information Extraction About the Key (1)

- Input: an oracle Ω , a data complexity ν , **a**, **b**, **c**, ε .
- Output: a guess about $\mathbf{c} \cdot \mathbf{k}$
- Initialize a counter \hat{m} to 0.
- For $i \leftarrow 1$ to $i = \nu$
 - Generate a plaintext \mathbf{x}_i uniformly at random and independently of the other queries. Submit \mathbf{x}_i to $\mathbf{\Omega}$ and get $\mathbf{y}_i = f_k(\mathbf{x}_i)$.
 - If $\mathbf{a} \cdot \mathbf{x}_i \oplus \mathbf{b} \cdot \mathbf{y}_i = 0$
 - Increment *m̂*.
 - End If
- End For

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Information Extraction About the Key (2)

- If ε > 0
 - If $\hat{m} > \frac{\nu}{2}$
 - Output " $\mathbf{c} \cdot \mathbf{k} = 0$ ".
 - else
 - Output " $\mathbf{c} \cdot \mathbf{k} = 1$ ".
 - End If
- Else
 - If $\hat{m} > \frac{\nu}{2}$
 - Output $\mathbf{\tilde{c}} \cdot \mathbf{k} = 1$ ".
 - else
 - Output " $\mathbf{c} \cdot \mathbf{k} = 0$ ".
 - End If
- End If

(ロ) (部) (E) (E)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Distinguishing Two Probability Distributions

Information Extraction About the Key (3)

- In the order of ε⁻² plaintext-ciphertext pairs are sufficient to get the bit c · k with high success probability.
- Are ε^{-2} plaintext-ciphertext pairs necessary ?
- Do we fully exploit the statistical information we have at disposal?

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

(ロ) (部) (E) (E)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

(ロ) (部) (E) (E)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

・ロト ・同ト ・ヨト

-

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

・ロト ・ 同ト ・ ヨト ・

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

・ロン ・回 と ・ ヨン・

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (1)

イロト イポト イラト イラト

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (2)

(ロ) (部) (E) (E)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (2)

Pascal Junod Statistical Cryptanalysis of Block Ciphers

・ロト ・回ト ・ヨト

-

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Statistical Hypothesis Tests (2)

This minimizes $P_e \Rightarrow$ optimal distinguisher (aka Neyman-Pearson lemma)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Back to Linear Cryptanalysis

We have to distinguish between two binomial laws, one with parameters ν and p = ¹/₂ + ε, the other with ν and p = ¹/₂ - ε, depending on the value of c ⋅ k.

Theorem

For a fixed number ν of data queried to the oracle Ω , Matsui's First Algorithm is optimal in the sense that it maximizes the success probability over all algorithms based on the sample bit

 $\mathbf{a} \cdot \mathbf{X}_i \oplus \mathbf{b} \cdot f_{\mathbf{k}}(\mathbf{X}_i).$

Soft Decision About the Key

- Matsui's First Algorithm extract only one bit of information about the key.
- Idea: guess the subkey of the last round (or of the first round), partially decrypt (encrypt) the pair of plaintext-ciphertext, and check a biased linear approximation.
- Wrong subkey: equivalent to the encryption by one more round.
- Right subkey: we should observe a bias in the linear approximation.

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Soft Decision About the Key(3)

- Matsui's Second Algorithm: consider the right subkey to be the one producing the largest experimental bias, and look for the remaining unknown key bits.
- Matsui's Third Algorithm: rank the subkey according to their experimental biases, and look for the remaining unknown key bits *until* the right one is found.

• Best attack exploits two linear approximations

- Observed that Matsui's way to combine the statistical information was not optimal.
- Introduced the concept of optimal key-ranking procedure (valid for any statistical cryptanalysis) based on *statistical hypothesis tests*.
- Experimentally confirmed: when applied to DES, it allows to gain a factor of about two regarding the computational complexity.
- Results published in [Junod-Vaudenay, FSE'03]

- Best attack exploits two linear approximations
- Observed that Matsui's way to combine the statistical information was not optimal.
- Introduced the concept of optimal key-ranking procedure (valid for any statistical cryptanalysis) based on *statistical hypothesis tests*.
- Experimentally confirmed: when applied to DES, it allows to gain a factor of about two regarding the computational complexity.
- Results published in [Junod-Vaudenay, FSE'03]

- Best attack exploits two linear approximations
- Observed that Matsui's way to combine the statistical information was not optimal.
- Introduced the concept of optimal key-ranking procedure (valid for any statistical cryptanalysis) based on *statistical hypothesis tests*.
- Experimentally confirmed: when applied to DES, it allows to gain a factor of about two regarding the computational complexity.
- Results published in [Junod-Vaudenay, FSE'03]

- Best attack exploits two linear approximations
- Observed that Matsui's way to combine the statistical information was not optimal.
- Introduced the concept of optimal key-ranking procedure (valid for any statistical cryptanalysis) based on *statistical hypothesis tests*.
- Experimentally confirmed: when applied to DES, it allows to gain a factor of about two regarding the computational complexity.
- Results published in [Junod-Vaudenay, FSE'03]

- Best attack exploits two linear approximations
- Observed that Matsui's way to combine the statistical information was not optimal.
- Introduced the concept of optimal key-ranking procedure (valid for any statistical cryptanalysis) based on *statistical hypothesis tests*.
- Experimentally confirmed: when applied to DES, it allows to gain a factor of about two regarding the computational complexity.
- Results published in [Junod-Vaudenay, FSE'03]

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Outline

Statistical Cryptanalysis Linear Cryptanalysis of DES

- Statistical Modelization of Distinguishers
- 2 Generalized Linear Cryptanalysis
 Good Idea ?
 - Link to χ^2 attacks

3 Summary

イロト イポト イラト イラト

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Luby-Rackoff Security Approach

- Luby and Rackoff (1988): construction of a pseudo-random permutation out of pseudo-random functions (construction based on a Feistel scheme).
- An oracle Ω implementing either a permutation C or a uniformly distributed random permutation C*.
- Central notion : computationally unbounded distinguisher δ^{ν} limited to ν queries to Ω .
- We are interested in the advantage of $\delta^{
 u}$:

$$\mathsf{Adv}_{\boldsymbol{\delta}^{\nu}}(\mathsf{C},\mathsf{C}^{*}) = \left| \Pr_{\mathsf{C}}\left[\boldsymbol{\delta}^{\nu}(\mathbf{x}) = 1\right] - \Pr_{\mathsf{C}^{*}}\left[\boldsymbol{\delta}^{\nu}(\mathbf{x}) = 1\right] \right|$$

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Luby-Rackoff Security Approach (2)

- Security proof \equiv finding a good upper bound on $Adv_{\delta^{\nu}}(C, C^*)$
- Strong model (because of the infinite computational ressources of the adversary)
- We can weaken it by restricting ourselves to certain classes of attacks.
- Adaptive vs. non-adaptive attacks

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Iterated Distinguisher of Order 1

• Notion introduced by Vaudenay in 1999

- Non-adaptive distinguisher keeping a single bit of information about each pair of data
- We are interested in the simplest case: distinguishing two random sources.

(ロ) (部) (E) (E)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Iterated Distinguisher of Order 1

- Notion introduced by Vaudenay in 1999
- Non-adaptive distinguisher keeping a single bit of information about each pair of data
- We are interested in the simplest case: distinguishing two random sources.

<ロ> (四) (四) (三) (三)

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Iterated Distinguisher of Order 1

- Notion introduced by Vaudenay in 1999
- Non-adaptive distinguisher keeping a single bit of information about each pair of data
- We are interested in the simplest case: distinguishing two random sources.

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Iterated Distinguisher of Order 1 (2)

Lemma (Vaudenay, 1999)

For any computationally unbounded distinguisher δ^{ν} limited to ν queries,

$$\mathsf{Adv}_{\boldsymbol{\delta}^{\nu}}(\mathsf{D}_0,\mathsf{D}_1) \leq 4|arepsilon|\sqrt{
u}$$

where D₀ is the uniform distribution on {0,1} and D₁ is a probability distribution defined as $\Pr_{D_1}[X = 0] = 1 - \Pr_{D_1}[X = 1] = \frac{1}{2} + \varepsilon.$

Iterated Distinguisher of Order 1 (3)

Interpretation of a distinguishing problem as a statistical hypotheses test

Lemma

Let $\pi_e = \frac{1}{2}(\alpha + \beta)$ denote the overall probability of error of a distinguisher δ . Then,

$$\mathsf{Adv}_{\boldsymbol{\delta}}(\mathsf{C},\mathsf{C}^*) = 1 - 2\pi_e = 1 - (\alpha + \beta).$$

• Description of optimal distinguishers by means of the likelihood-ratio

Iterated Distinguisher of Order 1 (4)

Theorem

For any computationally unbounded optimal iterated distinguisher δ^{ν} of order 1 limited to ν queries,

$$1-\frac{(\nu+1)}{2^{\nu\gamma-1}} \leq \mathsf{Adv}_{\boldsymbol{\delta}_{\mathsf{lin}}^{\nu}}(\mathsf{D}_0,\mathsf{D}_1) \leq 1-\frac{1}{(\nu+1)\cdot 2^{\nu\gamma-1}}$$

where $\gamma = C(D_0, D_1)$ is the Chernoff information between D_0 , the uniform distribution on $\{0, 1\}$ and D_1 , a probability distribution defined as $\Pr_{D_1}[X = 0] = 1 - \Pr_{D_1}[X = 1] = \frac{1}{2} + \varepsilon$ with

$$C(\mathsf{D}_0,\mathsf{D}_1) = -\min_{0\leq\lambda\leq 1} \mathsf{log}_2\left(\sum_{x\in\mathcal{X}} \Pr_{X_0}[x]^\lambda \Pr_{X_1}[x]^{1-\lambda}
ight)$$

・ロト ・同ト ・ヨト ・ヨト

Linear Cryptanalysis of DES Statistical Modelization of Distinguishers

Iterated Distinguisher of Order 1 (5)

- Proof of the asymptotic behaviour of an optimal distinguisher using (a slightly adapted version of) Chernoff's theorem
- Tighter bounds have been derived as well.
- Bounds have been adapted to linear and differential distinguishers.
- Results published in [Junod, Eurocrypt'03]

Iterated Distinguisher of Order 1 (5)

- Proof of the asymptotic behaviour of an optimal distinguisher using (a slightly adapted version of) Chernoff's theorem
- Tighter bounds have been derived as well.
- Bounds have been adapted to linear and differential distinguishers.
- Results published in [Junod, Eurocrypt'03]

Iterated Distinguisher of Order 1 (5)

- Proof of the asymptotic behaviour of an optimal distinguisher using (a slightly adapted version of) Chernoff's theorem
- Tighter bounds have been derived as well.
- Bounds have been adapted to linear and differential distinguishers.
- Results published in [Junod, Eurocrypt'03]

Iterated Distinguisher of Order 1 (5)

- Proof of the asymptotic behaviour of an optimal distinguisher using (a slightly adapted version of) Chernoff's theorem
- Tighter bounds have been derived as well.
- Bounds have been adapted to linear and differential distinguishers.
- Results published in [Junod, Eurocrypt'03]

Disgression

- Measures between discrete probability distributions: $||.||_1$, $||.||_2$, Chernoff exponent.
- $||.||_1$ is linked to the advantage.
- ||.||₂ is linked to the number of necessary samples in a known-plaintext attack.
- Chernoff exponent is linked to the asymptotic behaviour of the advantage during a known-plaintext attack

Good Idea ? Link to χ^2 attacks

Outline

1) Statistical Cryptanalysis

- Linear Cryptanalysis of DES
- Statistical Modelization of Distinguishers

Generalized Linear Cryptanalysis Good Idea ?

• Link to χ^2 attacks

3 Summary

Good Idea ? Link to χ^2 attacks

Generalized Linear Cryptanalysis

- Idea : can we generalize classical linear cryptanalysis to linear approximations on bigger finite fields?
- Typically, by increasing the probability space cardinality, we may expect more distinguishing power...
- Instead of a linear approximation from GF(2) to GF(2), can we think about something from GF(2^ℓ) to GF(2^{ℓ'}) for ℓ, ℓ' > 1 ?

Good Idea ? Link to χ^2 attacks

Generalized Linear Cryptanalysis

- Idea : can we generalize classical linear cryptanalysis to linear approximations on bigger finite fields?
- Typically, by increasing the probability space cardinality, we may expect more distinguishing power...
- Instead of a linear approximation from GF(2) to GF(2), can we think about something from GF(2^ℓ) to GF(2^{ℓ'}) for ℓ, ℓ' > 1 ?

Generalized Linear Cryptanalysis

- Idea : can we generalize classical linear cryptanalysis to linear approximations on bigger finite fields?
- Typically, by increasing the probability space cardinality, we may expect more distinguishing power...
- Instead of a linear approximation from GF(2) to GF(2), can we think about something from GF(2^{ℓ}) to GF($2^{\ell'}$) for $\ell, \ell' > 1$?

Good Idea ? Link to χ^2 attacks

Generalized Linear Cryptanalysis (2)

- Paper [Baignères-Junod-Vaudenay, Asiacrypt'04]
 - Definition of optimal distinguishers on discrete spaces of any cardinality.
 - Computation of the necessary amount of samples
 - Ciphers protected against classical linear cryptanalysis are somewhat protected against GF(2)-linear approximations.

Generalized Linear Cryptanalysis (3)

 $\bullet \ Let \ D_0 \ and \ D_1 \ be two discrete probability distributions sharing the same support. We assume that$

$$\forall z \in \mathcal{Z} \qquad \Pr_{\mathsf{D}_0}[z] = \pi_z \text{ and } \Pr_{\mathsf{D}_1}[z] = \pi_z + \varepsilon_z \text{ with } |\varepsilon_z| \ll \pi_z.$$

Measure of "bias": Let ε_z = Pr_{D1}[z] - 1/|Z|. The Squared Euclidean Imbalance (SEI) Δ(D1) of a distribution D1 of support Z from the uniform distribution is defined by

$$\Delta(\mathsf{D}_1) = |\mathcal{Z}| \sum_{z \in \mathcal{Z}} \varepsilon_z^2.$$

Good Idea ? Link to χ^2 attacks

Outline

1 Statistical Cryptanalysis

- Linear Cryptanalysis of DES
- Statistical Modelization of Distinguishers

2 Generalized Linear Cryptanalysis

- Good Idea ?
- Link to χ^2 attacks

3 Summary

A (10) < A (10) </p>

Good Idea ? Link to χ^2 attacks

Link to χ^2 attacks

In a χ^2 cryptanalysis, the adversary does not need to know D₀, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

Pascal Junod Statistical Cryptanalysis of Block Ciphers

Good Idea ? Link to χ^2 attacks

Link to χ^2 attacks

In a χ^2 cryptanalysis, the adversary does not need to know D₀, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

0

$$\hat{\chi}^2 = \sum_{i=1}^m \frac{\left(\hat{x}_i - np_i(\bar{\theta})\right)^2}{np_i(\bar{\theta})}$$

Good Idea ? Link to χ^2 attacks

Link to χ^2 attacks (2)

• Complexity of a χ^2 attack $\rightarrow O(1/\Delta(D_1))$

• Not worse (up to a constant term) than an optimal distinguisher.

Good Idea ? Link to χ^2 attacks

Link to χ^2 attacks (2)

- Complexity of a χ^2 attack $\rightarrow O(1/\Delta(D_1))$
- Not worse (up to a constant term) than an optimal distinguisher.

Good Idea ? Link to χ^2 attacks

Link to χ^2 attacks (3)

Observation

When one does not know precisely what happens in the attacked cipher, the best practical alternative to an optimal distinguisher seems to be the χ^2 attack.

・ロト ・ 同ト ・ ヨト ・

- Very old and simple results in statistics still not fully exploited in 2004 in the crypto field.
- Theoretically, one could always describe an optimal distinguisher (but we still have to compute the underlying probability distributions...)
- More applications?

Merci !

Pascal Junod Statistical Cryptanalysis of Block Ciphers

・ロン ・四ト ・ヨン ・ヨン