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Cryptanalysis of Block Ciphers

Most existing “generic” attacks against block ciphers are of
statistical nature.

Differential cryptanalysis (and variants) [Biham-Shamir,
1990,...]
Linear cryptanalysis [Matsui, 1993]
Davies and Murphy’s attack [Davies-Murphy, 1995]
χ2 cryptanalysis [Vaudenay, 1996]
Partitioning cryptanalysis [Harpes-Massey, 1997]
Stochastic cryptanalysis [Minier-Gilbert, 2000]

Focus is often put on the “deviant” property itself.
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In this Talk

Focus

In this talk, we are mostly interested in how it is possible to
optimally exploit these deviant properties.
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Linear Cryptanalysis

Matsui’s attacks against DES (1993)

→ First observations by Shamir/Franklin (1985)

→ Tardy-Corfdir and Gilbert’s attack against FEAL (1991)

First successful experimental attack against DES (Matsui,
1994)
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Best Known Linear Approximation of 15-round DES

The best known linear approximation on 15-round DES is

xl{7,13,24} ⊕ xr{15,19} ⊕ yl{2,7,13,24} ⊕ yr{16} =

k
(1)
{24,28} ⊕ k

(3)
{25} ⊕ k

(4)
{3} ⊕ k

(5)
{25} ⊕ k

(7)
{25} ⊕ k

(8)
{3} ⊕ k

(9)
{25} ⊕ k

(11)
{25}⊕

k
(12)
{3} ⊕ k

(13)
{25} ⊕ k

(15)
{25}

where k
(i)
{B} denotes the set B of the i-th round subkey. The

above linear approximation holds with probability
1
2 − 1.19 · 2−22.

We can write the linear approximation as a · x⊕ b · y = c · k.
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Information Extraction About the Key (1)

Input: an oracle Ω, a data complexity ν, a, b, c, ε.

Output: a guess about c · k
Initialize a counter m̂ to 0.

For i← 1 to i = ν

Generate a plaintext xi uniformly at random and independently
of the other queries. Submit xi to Ω and get yi = fk(xi).
If a · xi ⊕ b · yi = 0
Increment m̂.
End If

End For
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Information Extraction About the Key (2)

If ε > 0

If m̂ > ν

2
Output “c · k = 0”.
else

Output “c · k = 1”.
End If

Else

If m̂ > ν

2
Output “c · k = 1”.
else

Output “c · k = 0”.
End If

End If

Pascal Junod Statistical Cryptanalysis of Block Ciphers



Statistical Cryptanalysis
Generalized Linear Cryptanalysis

Summary

Linear Cryptanalysis of DES
Statistical Modelization of Distinguishers

Distinguishing Two Probability Distributions
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Information Extraction About the Key (3)

In the order of ε−2 plaintext-ciphertext pairs are sufficient to
get the bit c · k with high success probability.

Are ε−2 plaintext-ciphertext pairs necessary ?

Do we fully exploit the statistical information we have at
disposal?
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Statistical Hypothesis Tests (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
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Statistical Hypothesis Tests (1)

D0 or D1

Random source

S

A

0 or 1

z1, . . . , zn ∈ Z
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Statistical Hypothesis Tests (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

D1.
following either distribution D0 or
Random source generating iid values in Z
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Statistical Hypothesis Tests (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

following either distribution D0 or
D1.

The distinguisher decides

whether D = D0 or D = D1

Random source generating iid values in Z
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Statistical Hypothesis Tests (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

The distinguisher decides

whether D = D0 or D = D1

following either distribution D0 or
D1.

Two types of mistake:

Random source generating iid values in Z
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Statistical Hypothesis Tests (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

following either distribution D0 or
D1.

The distinguisher decides

whether D = D0 or D = D1

- output 0 when D = D1 (probability α)
- output 1 when D = D0 (probability β)

Two types of mistake:

Random source generating iid values in Z
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Statistical Hypothesis Tests (1)

D0 or D1

0 or 1

A

S

z1, . . . , zn ∈ Z

following either distribution D0 or
D1.

Two types of mistake:
- output 0 when D = D1 (probability α)
- output 1 when D = D0 (probability β)The distinguisher decides

whether D = D0 or D = D1

Optimal distinguisher ⇔ Pe = 1
2 (α + β) minimum

Random source generating iid values in Z
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Statistical Hypothesis Tests (2)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0

[a]

PrD1
[a]
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Statistical Hypothesis Tests (2)

Probability that S sent a
when D = D0

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0

[a]

PrD1
[a]

Number of times S sent a
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Statistical Hypothesis Tests (2)

This minimizes Pe ⇒ optimal distinguisher
(aka Neyman-Pearson lemma)

Optimal Rule:
choose 0 when LLR(zn) ≥ 0
choose 1 when LLR(zn) < 0

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0

[a]

PrD1
[a]
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Back to Linear Cryptanalysis

We have to distinguish between two binomial laws, one with
parameters ν and p = 1

2 + ε, the other with ν and p = 1
2 − ε,

depending on the value of c · k.

Theorem

For a fixed number ν of data queried to the oracle Ω, Matsui’s

First Algorithm is optimal in the sense that it maximizes the

success probability over all algorithms based on the sample bit

a ·Xi ⊕ b · fk(Xi).
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Soft Decision About the Key

Matsui’s First Algorithm extract only one bit of information
about the key.

Idea: guess the subkey of the last round (or of the first
round), partially decrypt (encrypt) the pair of
plaintext-ciphertext, and check a biased linear approximation.

Wrong subkey: equivalent to the encryption by one more
round.

Right subkey: we should observe a bias in the linear
approximation.
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Soft Decision About the Key(3)

Matsui’s Second Algorithm: consider the right subkey to be
the one producing the largest experimental bias, and look for
the remaining unknown key bits.

Matsui’s Third Algorithm: rank the subkey according to their
experimental biases, and look for the remaining unknown key
bits until the right one is found.
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An Application of Optimal Distinguishers

Best attack exploits two linear approximations

Observed that Matsui’s way to combine the statistical
information was not optimal.

Introduced the concept of optimal key-ranking procedure
(valid for any statistical cryptanalysis) based on statistical

hypothesis tests.

Experimentally confirmed: when applied to DES, it allows to
gain a factor of about two regarding the computational
complexity.

Results published in [Junod-Vaudenay, FSE’03]
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Luby-Rackoff Security Approach

Luby and Rackoff (1988): construction of a pseudo-random
permutation out of pseudo-random functions (construction
based on a Feistel scheme).

An oracle Ω implementing either a permutation C or a
uniformly distributed random permutation C∗.

Central notion : computationally unbounded distinguisher δν

limited to ν queries to Ω.

We are interested in the advantage of δν :

Advδν (C, C∗) =
∣

∣

∣
Pr
C

[δν(x) = 1]− Pr
C∗

[δν(x) = 1]
∣

∣

∣
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Luby-Rackoff Security Approach (2)

Security proof ≡ finding a good upper bound on Advδν (C, C∗)

Strong model (because of the infinite computational
ressources of the adversary)

We can weaken it by restricting ourselves to certain classes of
attacks.

Adaptive vs. non-adaptive attacks
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Iterated Distinguisher of Order 1

Notion introduced by Vaudenay in 1999

Non-adaptive distinguisher keeping a single bit of information
about each pair of data

We are interested in the simplest case: distinguishing two
random sources.
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Iterated Distinguisher of Order 1 (2)

Lemma (Vaudenay, 1999)

For any computationally unbounded distinguisher δν limited to ν
queries,

Advδν (D0, D1) ≤ 4|ε|
√

ν

where D0 is the uniform distribution on {0, 1} and D1 is a

probability distribution defined as

PrD1 [X = 0] = 1− PrD1 [X = 1] = 1
2 + ε.
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Iterated Distinguisher of Order 1 (3)

Interpretation of a distinguishing problem as a statistical
hypotheses test

Lemma

Let πe = 1
2(α + β) denote the overall probability of error of a

distinguisher δ. Then,

Advδ(C, C∗) = 1− 2πe = 1− (α + β).

Description of optimal distinguishers by means of the
likelihood-ratio
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Iterated Distinguisher of Order 1 (4)

Theorem

For any computationally unbounded optimal iterated distinguisher

δν of order 1 limited to ν queries,

1− (ν + 1)

2νγ−1
≤ Advδν

lin
(D0, D1) ≤ 1− 1

(ν + 1) · 2νγ−1

where γ = C(D0, D1) is the Chernoff information between D0, the

uniform distribution on {0, 1} and D1, a probability distribution

defined as PrD1 [X = 0] = 1− PrD1 [X = 1] = 1
2 + ε with

C(D0, D1) = − min
0≤λ≤1

log2

(

∑

x∈X
Pr
X0

[x]λ Pr
X1

[x]1−λ

)

.
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Iterated Distinguisher of Order 1 (5)

Proof of the asymptotic behaviour of an optimal distinguisher
using (a slightly adapted version of) Chernoff’s theorem

Tighter bounds have been derived as well.

Bounds have been adapted to linear and differential
distinguishers.

Results published in [Junod, Eurocrypt’03]
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Disgression

Measures between discrete probability distributions: ||.||1,
||.||2, Chernoff exponent.

||.||1 is linked to the advantage.

||.||2 is linked to the number of necessary samples in a
known-plaintext attack.

Chernoff exponent is linked to the asymptotic behaviour of
the advantage during a known-plaintext attack
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Generalized Linear Cryptanalysis

Idea : can we generalize classical linear cryptanalysis to linear
approximations on bigger finite fields?

Typically, by increasing the probability space cardinality, we
may expect more distinguishing power...

Instead of a linear approximation from GF(2) to GF(2), can we
think about something from GF(2`) to GF(2`′) for `, `′ > 1 ?
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Generalized Linear Cryptanalysis (2)

Paper [Baignères-Junod-Vaudenay, Asiacrypt’04]

Definition of optimal distinguishers on discrete spaces of any
cardinality.
Computation of the necessary amount of samples
Ciphers protected against classical linear cryptanalysis are
somewhat protected against GF(2)-linear approximations.
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Generalized Linear Cryptanalysis (3)

Let D0 and D1 be two discrete probability distributions
sharing the same support. We assume that

∀z ∈ Z Pr
D0

[z] = πz and Pr
D1

[z] = πz + εz with |εz| ¿ πz.

Measure of “bias”: Let εz = PrD1 [z]− 1
|Z| . The Squared

Euclidean Imbalance (SEI) ∆(D1) of a distribution D1 of
support Z from the uniform distribution is defined by

∆(D1) = |Z|
∑

z∈Z
ε2
z.
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Link to χ
2 attacks

In a χ2 cryptanalysis, the adversary does not need to know D0, i.e.,
what exactly happens in the inner transformations of the cipher
(which can therefore be considered as a black box).

χ̂2 =
m
∑

i=1

(

x̂i − npi(θ̄)
)2

npi(θ̄)
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Link to χ
2 attacks (2)

Complexity of a χ2 attack → O(1/∆(D1))

Not worse (up to a constant term) than an optimal
distinguisher.
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Link to χ
2 attacks (3)

Observation

When one does not know precisely what happens in the attacked
cipher, the best practical alternative to an optimal distinguisher
seems to be the χ2 attack.
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Very old and simple results in statistics still not fully exploited
in 2004 in the crypto field.

Theoretically, one could always describe an optimal
distinguisher (but we still have to compute the underlying
probability distributions...)

More applications?
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Merci !
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