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Motivations

Dozens of open- or closed-source crypto libraries are available.

Many people use crypto libraries on a daily basis.

Most of the time, the final result does not reach the expected
cryptographic strength.

In average, | need 10-15’ to identify a problematic piece of

open-source cryptographic software that | can tranform in an
exam problem for my “Industrial Cryptography” lecture.

Conclusion
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Not Convinced?

An Empirical Study of Cryptographic Misuse
in Android Applications

Manuel Egele, David Brumley Yanick Fratantonio, Christopher Kruegel
Carnegie Mellon University University of California, Santa Barbara
{megele,dbrumley}@cmu.edu {yanick,chris}@cs.ucsb.edu

M. Egele et al. An Empirical Study of Cryptographic Misuse in Android Applications, ACM-CCS 2012.

Conclusion
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Not Convinced?

ABSTRACT

Developers use cryptographic APIs in Android with the intent
of securing data such as passwords and personal information
on mobile devices. In this paper, we ask whether developers
use the cryptographic APIs in a fashion that provides typical
cryptographic notions of security, e.g., IND-CPA security. We
develop program analysis techniques to automatically check
programs on the Google Play marketplace, and find that
out of 11,748 applications that use cryptographic APIs

'r erall — make at least one mistake. These numbers

show that applications do not use cryptographic APIs in a
fashion that maximizes overall security. We then suggest
specific remediations based on our analysis toward improving
overall cryptographic security in Android applications.

M. Egele et al. An Empirical Study of Cryptographic Misuse in Android Applications, ACM-CCS 2012.

Conclusion
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Not Convinced?

Rule 1: Do not use ECB mode for encryption. [6]

Rule 2: Do not use a non-random IV for CBC encryption. [6,
23]

Rule 3: Do not use constant encryption keys.

Rule 4: Do not use constant salts for PBE. [2, 5]

Rule 5: Do not use fewer than 1,000 iterations for PBE. [2,
5]

Rule 6: Do not use static seeds to seed SecureRandom(-).

M. Egele et al. An Empirical Study of Cryptographic Misuse in Android Applications, ACM-CCS 2012.
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This Talk is not about...

!

... blaming cryptographers that do not know or do
not care about programming and software develop-
ment issues.

7/75



Motivations Security Models Primitives Security Parameters Cryptographic Parameters API Simplicity Conclusion

This Talk is not about...

... trashing crypto libraries developers that do not
know everything about cryptography.
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This Talk is not about...

Q ... trolling 99.9995% of the crypto libraries users
) that do horrible mistake most of the time.
\
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This Talk is not about...

the other security aspects of crypto libraries,
namely attacks related to grey- and white-box ad-
versaries: side-channel attacks, SW reverse engi-
neering, exploiting and tampering, etc.
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Goals of this Talk

Exposing a real-world problem that has consequences every day
in practice: the lack of security-related usability in most
cryptographic libraries.

Identify important interactions between the academic and the
real world and their consequences.

Showing a sample of current good and bad practices.

Propose usability requirements on cryptographic libraries.
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Outline
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Symmetric Encryption Security Models

m Just in the symmetric-key encryption setting, many theoretical
security models exist:

m IND-CPA: indistinguishability under chosen-plaintext attacks
IND-CCA: indistinguishability under chosen-ciphertext attacks
INT-PTXT: integrity of plaintexts
INT-CTXT: integrity of ciphertexts
NM-CPA: non-malleability under chosen-plaintext attacks
NM-CCA: non-malleability under chosen-ciphertext attacks
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Security Models for Symmetric Encryption

Composition Method Privacy Integrity
IND-CPA | IND-CCA | NM-CPA || INT-PTXT | INT-CTXT
Encrypt-and-MAC insecure insecure | insecure secure insecure
MAC-then-encrypt secure insecure | insecure secure insecure
Encrypt-then-MAC secure insecure | insecure secure insecure
Composition Method Privacy Integrity
IND-CPA | IND-CCA | NM-CPA || INT-PTXT | INT-CTXT
Encrypt-and-MAC insecure insecure | insecure secure insecure
MAC-then-encrypt secure insecure | insecure secure insecure
Encrypt-then-MAC secure secure secure secure secure

Figure 2: Summary of security results for the composite authenticated encryption schemes. The
given encryption scheme is assumed to be IND-CPA for both tables while the given MAC is assumed
to be weakly unforgeable for the top table and strongly unforgeable for the bottom table.

Source: M. Bellare and C. Namprempre, Authenticated Encryption: Relations among Notions and Analysis of the Generic

Composition Paradigm, Asiacrypt 2000.
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Security Models for Symmetric Encryption

The Order of Encryption and Authentication

for Protecting Communications
(Or: How Secure is SSL?)*

Hugo Krawczyk**

Abstract. We study the question of how to generically compose sym-
‘metric encryption and authentication when building “secure channels”
for the protection of communications over insecure networks. We show
that any secure channels protocol designed to work with any combina-
tion of secure encryption (against chosen plaintext attacks) and secure
MAC must use the encrypt-then-authenticate method. We demonstrate
this by showing that the other common methods of composing encryp-
tion and ication, including the i the pt method
used in SSL, are not generically secure. We show an example of an en-
cryption function that provides (Shannon’s) perfect secrecy but when
combined with any MAC function under the authenticate-then-encrypt
method yields a totally insecure protocol (for example, finding passwords
or credit card numbers transmitted under the protection of such protocol
becomes an easy task for an active attacker). The same applies to the
encrypt-and-authenticate method used in SSH.

On the positive side we show that the authenticate-then-encrypt method
is secure if the encryption method in use is either CBC mode (with an
underlying secure block cipher) or a stream cipher (that xor the data
with a random or pseudorandom pad). Thus, while we show the generic
security of SSL to be broken, the current practical implementations of
the protocol that use the above modes of encryption are safe.

Crypto 2001.

Conclusion
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Generic Composition: Encrypt-and-MAC

L4 ¥ MAC
Encryption Key [ g ion

Y iag

Source: Wikipedia

Conclusion
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https://en.wikipedia.org/wiki/Authenticated_encryption
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Security of Generic Composition: EaM
Security Weak MAC Strong MAC
Result Reason Result Reason
IND-CPA Insecure | Proposition 4.1 Insecure | Proposition 4.1
Privacy | IND-CCA Insecure | IND-CPA insecure and | Insecure | IND-CPA insecure and
IND-CCA — IND-CPA IND-CCA — IND-CPA
NM-CPA Insecure | IND-CPA insecure and | Insecure | IND-CPA insecure and
NM-CPA — IND-CPA NM-CPA — IND-CPA
Integrity | INT-PTXT || Secure Theorem 4.3 Secure Theorems 4.3 and 2.5
INT-CTXT || Insecure | Proposition 4.4 Insecure | Proposition 4.4

Figure 4: Summary of results for the Encrypt-and-MAC composition method.

Source: M. Bellare and C. Namprempre, Authenticated Encryption: Relations among Notions and Analysis of the Generic

Composition Paradigm, Asiacrypt 2000.
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Generic Composition: MAC-then-Encrypt
Key

MAC

10N

MAC tag

N

Encryption -——

e

Source: Wikipedia
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Security of Generic Composition: MtE
Security ‘Weak MAC Strong MAC
Result Reason Result Reason
IND-CPA Secure Theorem 4.5 Secure Theorem 4.5
Privacy | IND-CCA Insecure | NM-CPA insecure and | Insecure | NM-CPA insecure and
NM-CPA — IND-CCA NM-CPA — IND-CCA
NM-CPA Insecure | Proposition 4.6 Insecure | Proposition 4.6
INT-PTXT || Secure Theorem 4.5 Secure Theorems 4.5 and 2.5
Integrity | INT-CTXT || Insecure | IND-CPA secure and || Insecure | IND-CPA secure and
NM-CPA insecure and NM-CPA insecure and
INT-CTXTAIND-CPA INT-CTXTAIND-CPA
— NM-CPA — NM-CPA

Figure 5: Summary of results for the MAC-then-encrypt composition method

Source: M. Bellare and C. Namprempre, Authenticated Encryption: Relations among Notions and Analysis of the Generic

Composition Paradigm, Asiacrypt 2000.
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M'E vs. SSL/TLS: CVE-2013-0169 / CVE-2016-2107

Filippo Valsorda @ FiloSotile - 4 mai
Just published a zero-to-decryption analysis of how and why the OpenSSL

padding oracle works blog.cloudflare.com/yet-another-pa...

& - [t
|

Cretn eres

3 303 ¥ 341

g o o

kennyog

@FiloSottile Was worried we'd missed this issue
in the L13 paper. Turns out we didn't...

@ Voir la traduction

o

Ift +padlen+ 1> plen, then the plaintext is not long
enough to contain the padding (as indicated by the last byte
of plaintext) plus a MAC tag. In this case, run a loop as

7T DREGesEme

18:31 - 4 mai 2016

Source: Twitter
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Generic Composition: Encrypt-then-MAC

Encryption

Source: Wikipedia
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Security of Generic Composition: EtM

Security Weak MAC Strong MAC
Result Reason Result Reason
IND-CPA Secure Theorem 4.7 Secure | Theorem 4.9

Privacy | IND-CCA Insecure | NM-CPA insecure and || Secure | Theorem 4.9
NM-CPA — IND-CCA

NM-CPA Insecure | Proposition 4.6 Secure | IND-CCA secure and
IND-CCA — NM-CPA

INT-PTXT | Secure Theorem 4.7 Secure | INT-CTXT secure
and INT-CTXT —
INT-PTXT

Integrity | INT-CTXT | Insecure | IND-CPA secure and Secure | Theorem 4.9
NM-CPA insecure and
INT-CTXTAIND-CPA
— NM-CPA

Figure 6: Summary of results for the encrypt-then-MAC composition method

Source: M. Bellare and C. Namprempre, Authenticated Encryption: Relations among Notions and Analysis of the Generic

Composition Paradigm, Asiacrypt 2000.
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Symmetric Encryption in Practice

m In practice, facing a passive adversary only is extremely
infrequent.

m The only viable symmetric encryption model is authenticated
encryption, i.e. IND-CCA + unforgeability, than can be achieved
by properly combining IND-CPA + INT-CTXT.

m There is only two reasonable (i.e., fool-safe) options:

m use a well-equipped and secure authenticated encryption mode,
like e.g. AES-GCM;

m use an encrypt-then-authenticate scheme, like e.g. AES-CTR +
HMAC-SHA256 + HKDF.

25/75
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Generic Composition: What could Go Wrong?

AES in ECB mode;
AES in CBC mode with constant IV,
AES in CBC mode with random 1V;

AES in CBC mode with random IV, HMAC-SHA256 on the
ciphertext, both using the same key;

m etc.
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Back to Software

m Many crypto libraries offer the following options to the
developper:

m secure ciphers without mode of operations;

m secure ciphers with insecure modes of operations, like AES-ECB,
AES-CTR or AES-CBC;

m secure ciphers with secure modes of operations, but with
insecure parameters, like AES-GCM with repeating nonces;

m using the same key for encryption and authentication when not
using authenticated encryption modes;

m etc.

27/75
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Do we Really Need Them?

Ciphers and cipher modes

= Authenticated cipher modes EAX, OCB, GCM, SIV, CCM, and ChaCha20Poly1305

= Unauthenticated cipher modes CTR, CBC, XTS, CFB, OFB, and ECB

algorithm type

-

name

authenticated encryption schemes

GCM, CCM, EAX

high speed stream ciphers

ChaCha8, ChaChal2. ChaCha20, Panama, Sosemanuk, Salsa20,
XSalsa20

AES and AES candidates

AES (Rijndael), RC6, MARS, Twofish, Serpent, CAST-256

other block ciphers

IDEA, Triple-DES (DES-EDE2 and DES-EDE3), Camellia, SEED,
RCS, Blowfish, TEA, XTEA, Skipjack, SHACAL-2

% block cipher modes of operation

ECB, CBC, CBC ciphertext stealing (CTS), CFB, OFB, counter mode
(CTR)

message authentication codes

VMAC, HMAC, GMAC (GCM), CMAC, CBC-MAC, DMAC,
Two-Track-MAC

28/75
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Dream Crypto Library Requirement #1

Offer only high-level APIs
implementing authenticated
encryption or sealing.

29/75
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Dream Crypto Library Requirement #2

Force the developper to build the
library with
-DUSE_LOW_LEVEL_API for having
access to other modes; warn at
compilation time and in debug
mode for every use of an unsecure,
low-level API.
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Example of Good Practice: 1ibsodium

#define MESSAGE ((const unsigned char *) "test")
#define MESSAGE_LEN 4
#define CIPHERTEXT_LEN (crypto_secretbox_MACBYTES + MESSAGE_LEN)

unsigned char nonce[crypto_secretbox_NONCEBYTES];
unsigned char key[crypto_secretbox_KEYBYTES];
unsigned char ciphertext[CIPHERTEXT_LEN];

randombytes_buf(nonce, sizeof nonce);
randombytes_buf(key, sizeof key);
crypto_secretbox_easy(ciphertext, MESSAGE, MESSAGE_LEN, nonce, key);

unsigned char decrypted[MESSAGE_LEN];

if (crypto_secretbox_open_easy(decrypted, ciphertext, CIPHERTEXT_LEN, nonce, key) != 0) {
/* message forged! */

31/75
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The Dark Side of Crypto Diversity

Ciphers and cipher modes

= Authenticated cipher modes EAX, OCB, GCM, SIV, CCM, and ChaCha20Poly1305

= Unauthenticated cipher modes CTR, CBC, XTS, CFB, OFB, and ECB

= AES (including constant time SSSE3 and AES-NI versions)

= AES candidates Serpent, Twofish, MARS, CAST-256, RC6

= Stream ciphers Salsa20/XSalsa20, ChaCha20, and RC4

= DES, 3DES and DESX

= National/telecom block ciphers SEED, KASUMI, MISTY1, GOST 28147

= Other block ciphers including Threefish-512, Blowfish, CAST-128, IDEA, Noekeon, TEA,
XTEA, RC2, RC5, SAFER-SK

= Large block cipher construction Lion

Hash functions and MACs

= SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512

= SHA-3 winner Keccak-1600

= SHA-3 candidate Skein-512

= Authentication codes HMAC, CMAC, Poly1305, SipHash

= RIPEMD-160, RIPEMD-128, Tiger, Whirlpool

= Hash function combiners (Parallel and Comb4P)

= National standard hashes HAS-160 and GOST 34.11

= Non-cryptographic checksums Adler32, CRC24, CRC32

= Obsolete algorithms MD5, MD4, MD2, CBC-MAC, X9.19 DES-MAC
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The Dark Side of Crypto Diversity

m Many crypto libraries offer the option to use:

m non-cryptographic algorithms (e.g., CRC32, ADLER, Mersenne
Twister)

m insecure ciphers (e.g., DES, RC4, MD5, SHA1, insecure variants of
CBC-MAC)

m insecure protocols (e.g., SSL 2.0, SSL 3.0)

m insecure ciphersuites (e.g.,
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5);

m etc.
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Dream Crypto Library Requirement #3

Force the developper to build the
library with -DUSE_WEAK_CIPHERS
for having access to weak or
obsolete ciphers; warn at
compilation time and in debug
mode for every use of an unsecure,
low-level API.
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Self-Defending Implementations

Example of Triple-DES: a self-defending implementation should check
that ! (key[0..7] == key[8..15] == key[16..23]).

/*

* TripleDES Key Schedule

*/

void TripleDES::key_schedule(const byte key[], size_t length)
{
des_key_schedule(&round_key[@], key);
des_key_schedule(&round_key[32], key + 8);

if(length == 24)
des_key_schedule(&round_key[64], key + 16);
else
copy_mem(&round_key[64], &round_key[@], 32);
}

36/75
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Self-Defending Implementations ?

m Ciphers designed to have a flexible key length (Blowfish, RC5,
etc.): emit a warning, or even better, refuse to key-schedule in
standard conditions when the key length is smaller than 80 bits.

m Forinstance, 1ibgcrypt implementation of Blowfish
key-schedule does a self-test, looks for weak keys, but allows
32-bit ones.

38/75
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Self-Defending Implementations ?

m Most libraries don’t tell anything when you generate an RSA key
with a too short key length.

m In 2016, one knows that 1024 bits is a strict minimum only valid
for data with a very short expected lifetime, and that we should
use at least 1536-bit keys, better 2048-bit ones.

39/75
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RSA Case: openssl

nowhere:apps pjunod$./openssl version
OpenSSL 1.0.2d 9 Jul 2015

nowhere:apps pjunod$ ./openssl genrsa

Generating RSA private key, 2048 bit long modulus

40/75
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RSA Case: openssl

nowhere:apps pjunod$ openssl version
OpenSSL 0.9.8zg 14 July 2015

nowhere:apps pjunod$ openssl genrsa

Generating RSA private key, 512 bit long modulus

41/75
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RSA Case: openssl

nowhere:apps pjunod$ ./openssl genrsa 128

Generating RSA private key, 128 bit long modulus
B I i L
B i i I o

e is 65537 (0x10001)
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RSA Case: openssl

nowhere:apps pjunod$ ./openssl genrsa 64

Generating RSA private key, (;41 bit long modulus

B T
B

e is 65537 (0x10001)
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RSA Case: openssl

nowhere:apps pjunod$ ./openssl genrsa 32

Generating RSA private key, 32 bit long modulus

B o O
B B

e is 65537 (0x10001)
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RSA Case: openssl

for (550 {
/%

* When generating ridiculously small keys, we can get stuck
* continually regenerating the same prime values. Check for this and
* bail if it happens 3 times.

*/
unsigned int degenerate = 0;
do {
if (!BN_generate_prime_ex(rsa->q, bitsq, @, NULL, NULL, cb))

goto err;
} while ((BN_cmp(rsa->p, rsa->q) == @) &% (++degenerate < 3));
if (degenerate == 3) {

ok = 0; /* we set our own err */
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
goto err;
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RSA Case: 1ibressl

LibreSSL @

LibreSSL 2.4.0 released May 31st, 2016
LibreSSL is a version of the TLS/crypto stack forked from OpenSSL in 2014, with goals of modernizing the

codebase, improving security, and applying best practice development processes.

eduroam-3-153:0penssl pjunod$ ./openssl genrsa 32

Generating RSA private key, 32 bit long modulus

B s
B B R S

e is 65537 (0x10001)

Conclusion
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RSA Case: BoringSSL

Motivations Security Models

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

somewhere:tool pjunod$ ./bssl genrsa -bits 32

----- BEGIN RSA PRIVATE KEY-----
MCsCAQACBQC71Z3NAgMBAAECBFg1hoECAWDAoQIDAN tAgIEAQICQOECAMINN

————— END RSA PRIVATE KEY-----
somewhere:tool pjunod$ [J
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RSA Case: 1ibgcrypt

|static gpg_err_code_t

igenerate_std (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e,

| int transient_key)

{

| gcry_mpi_t p, q; /* the two primes */
gcry_mpi_t dj /* the private key */

| gecry_mpi_t u;

gcry_mpi_t t1, t2;

gcry_mpi_t n; /* the public key */

gcry_mpi_t e; /* the exponent */

gcry_mpi_t phi; /* helper: (p-1)(g-1) */

gcry_mpi_t g;

gcry_mpi_t f;

gcry_random_level_t random_level;

if (fips_mode ())
if (nbits < 1024}
return GPG_ERR_INV_VALUE;

if (transient_key)
return GPG_ERR_INV_VALUE;
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RSA Case: Botan in 2015

#include <botan/keypair.h>
#include <botan/internal/assert.h>

namespace Botan {

/*

* Create a RSA private key

*/

RSA_PrivateKey: :RSA_PrivateKey(RandomNumberGenerator& rng,
size_t bits, size_t exp)

{
if(bits < 512)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
to_string(bits) + " bits long");
if(exp <3 |l exp % 2 == Q)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent™");
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RSA Case: Botan in 2016

namespace Botan {

/*
* Create a RSA private key
*/
RSA_PrivateKey: :RSA_PrivateKey(RandomNumberGenerator& rng,
size_t bits, size_t exp)
{
if(bits < 1024)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
std::to_string(bits) + " bits long");
if(exp <3 |l exp % 2 == 0)
throw Invalid_Argument(algo_name() +

Invalid encryption exponent");
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RSA Case: Keyczar

// static
RSAPrivateKey* RSAPrivateKey::GenerateKey(int size) {
if (!KeyType::IsValidCipherSize(KeyType::RSA_PRIV, size))
return NULL;

static const int kAESSizes[] = {128, 192, 256, 0};

#ifdef COMPAT_KEYCZAR_06B

static const int kHMACSHA1Sizes[] = {256, 0};

static const int kRSASizes[] = {512, 768, 1024, 2048, 3072, 409, 0};
#else

static const int kHMACSizes[] = {160, 224, 256, 384, 512, 0};

static const int kRSASizes[] = {1024, 2048, 3072, 40%, 0};

#endif

static const int kDSASizes[] = {1024, 2048, 3072, 0};

static const int kECDSASizes[] = {192, 224, 256, 384, 0%;
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Myriad of Other Examples

m Small Diffie-Hellman groups
m Weak elliptic curves
m Weak ciphersuites (EXPORT, involving DES or RC4 or MD5, ...)

m etc.
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Dream Crypto Library Requirement #5

s Offer only security parameters and
configuration options that are meaningful in
terms of security.

m Offer safe security parameters by default.

n If really required, weaker/obsolete variants
could be made available, but such that it

requires an effort from the developper and
emitting warnings at compilation time.

Conclusion
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Cryptographic Parameters

Without (secure) randomness, no cryptographic security is
possible.

Most cryptographic libraries do a rather good job in providing a
cryptographically secure PRNG (CPRNG) to the developper.
However, most cryptographic libraries put the responsibility to
use the CPRNG on the developper shoulders.

Two bad things can happen:

m Forget to use random values;
m Use a non-cryptographic PRNG.
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Cryptographic Nonces

The notion of cryptographic nonce (“number used only once”)
dates back to defenses against replay attacks in cryptographic
protocols.

(Wrong) assumption: generating (cryptographically secure)
randomness is hard; fortunately, nonces are easier to manage.

In practice, the only fool-proof way to generate nonces ... is to
ensure they have a sufficient length and to generate them at
random!

Depending on the cipher, reusing a nonce can have a
catastrophic impact (e.g. ECDSA).

Conclusion
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Cryptographic Nonces

Pascal Junod
@cryptopathe

What will happen first? #crypto #predictions

Crypto Il by Dan Boneh
Univ. quantum computer
Non-repeating nonces

FHE

228 votes » Résultats définitifs

13.06.16 10:33

14 RETWEETS 21 JAIME

API Simplicity

21%

43 %

16 %

20 %

Conclusion
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Self-Defending Implementations

PyCrypto counter mode API

def new(nbits, prefix=b(""), suffix=b(""), initial_value=1, overflow=@, little_endian=False,
allow_wraparound=False, disable_shortcut=_deprecated):
"""Create a stateful counter block function suitable for CTR encryption modes.

Each call to the function returns the next counter block.
Each counter block is made up by three parts::

prefix || counter value || postfix

The counter value is incremented by 1 at each call.
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Self-Defending Implementations

:Parameters:
nbits : integer
Length of the desired counter, in bits. It must be a multiple of 8.
prefix : byte string
The constant prefix of the counter block. By default, no prefix is
used.
suffix : byte string
The constant postfix of the counter block. By default, no suffix is
used.
initial_value : integer
The initial value of the counter. Default value is 1.
overflow : integer
This value is currently ignored.
little_endian : boolean
If *True*, the counter number will be encoded in little endian format.
If *False* (default), in big endian format.
allow_wraparound : boolean
If *True*, the counter will automatically restart from zero after
reaching the maximum value (" "2**nbits-1"").
If *False* (default), the object will raise an *OverflowError*.
disable_shortcut : deprecated
This option is a no-op for backward compatibility. It will be removed
in a future version. Don't use it.

Conclusion
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Self-Defending Implementations

cryptopathe opened this issue on 14 Nov 2014 - 1 comment

cryptopathe commented on 14 Nov 2014

Dear pyCrypto developpers,

| can't figure out any useful situation where the allow_wraparound flag defined in 1ib/Crypto
/util/counter.py would be useful in practice. Instead, allowing the counter to wrap in the CTR mode can
open a serious security issue (one can XOR the portions of the ciphertext generated with the same
counter values, and one immediately gets the XOR of the corresponding parts of the plaintexts, which is a
serious problem for non-random plaintexts).

If you split the CTR initial value into a nonce and a random initial counter value, and that you get
exceptions because of the counter wrapping around, then it is because your counter has probably a too
small bit width for your application. With a proper counter size, this situation should only happen with a
probability that is negligible in practice.

| have quickly searched on Github examples where allow_wraparound would be set to True, and found
none.

In summary, this option, introduced in 2.1.0alpha2, can IMHO only help developers to write bad crypto
code, and it should be removed.
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Self-Defending Implementations

dlitz commented on 10 Jul Owner

| think you're probably right.

When | designed counter 7 years ago, | was probably worried about a split nonce being too small and |
imagined that people might deal with this by just using a full 128-bit random nonce and relying on their
sparse distribution to avoid block collisions. Another reason it might have been useful was to help avoid a
timing side-channel in code where authentication happens after decryption.

At this point, though, | don't know of any protocol that actually does either of those things, and the world
has moved on to better things like GCM, SIV, and chacha20poly1305. Meanwhile, | have seen confusion
about the allow_wraparound option, and it's also one of those weird PyCrypto-specific options that

doesn't exist in other libraries, so it'd probably be wise to just drop it.

Thanks!
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Dream Crypto Library Requirement #4

Offer only capabilities that are
useful for developers and that do
not allow him/her to trigger
security-related mistakes.

Conclusion
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Cryptographic Parameters: User Responsibility

define MESSAG c
#define M

N 4 ‘ —
SRR e e Generating the
unsigned char nonce[crypto_secretbox_NONCEBYTES]; nonce is the
unsigned char key[crypto_secretbox_KEYBYTES];
unsigned char ciphertext[CIPHERTEXT_LEN]; user’s
randombytes_buf(nonce, sizeof nonce); - TH
Fandostytes_buf(Key, s1zeof key); responsibility.
crypto_secretbox_easy(ciphertext, MESSAGE, MESSAGE_LEN, nonce, key);

unsigned char decrypted[MESSAGE_LEN];

if (crypto_secretbox_open_easy(decrypted, ciphertext, CIPHERTEXT_LEN, nonce,
/* message forged
}

"test”

key) != 2) {

The nonce doesn't have to be confidential, but it should never ever be reused with the same key. The easiest way to
generate a nonce is to use randombytes_buf() .
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Cryptographic Parameters: Nonces Reuse

GCM-SIV: Full Nonce Misuse-Resistant Auth-
enticated Encryption at Under One C/B

Shay Gueron! and Yehuda Lindell?

Trivial Nonce-Misusing Attack on Pure OMD

Tomer Ashur and Bart Mennink

Online Authenticated-Encryption and its
Nonce-Reuse Misuse-Resistance

Viet Tung Hoang?  Reza Reyhanitabar® Phillip Rogaway? Damian Vizar®

! Dept. of Computer Science, Georgetown University, USA
2 Dept. of Computer Science, University of Maryland, College Park, USA
* EPFL, Lausanne, Switzerland
* Dept. of Computer Science, University of California, Davis, USA
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Cryptographic Parameters: EADSA

Furthermore, it is well known that ECDSA’s session keys are much less tol-
erant than the long-term key of slight deviations from randomness, even if the
session keys are not revealed or reused. For example, Nguyen and Shparlinski
in [61] presented an algorithm using lattice methods to compute the long-term
ECDSA key from the knowledge of as few as 3 bits of r for hundreds of sig-
natures, whether this knowledge is gained from side-channel attacks or from
non-uniformity of the distribution from which r is taken.

EdDSA avoids these issues by generating r = H(hy, ..., hap—1, M), so that
different messages will lead to different, hard-to-predict values of r. No per-
message randomness is consumed. This idea of generating random signatures
in a secretly deterministic way, in particular obtaining pseudorandomness by
hashing a long-term secret key together with the input message, was proposed
by Barwood in [9]; independently by Wigley in [79]; a few months later in
a patent application [57] by Naccache, M’Raihi, and Levy-dit-Vehel; later by
M’Raihi, Naccache, Pointcheval, and Vaudenay in [55]; and much later by Katz
and Wang in [47]. The patent application was abandoned in 2003.
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Cryptographic Parameters: APl Responsibility

Signing a string is as follows. Note that a PRNG is required because the Digital Signature Standard specifies a per-message random value.

ECDSA<ECP, SHAL>:
privateKey.Load (.
ECDSA<ECP, SHAL

PrivateKey privateKey;

signer signer( privateKey

AutoSeededRandomPool prng;
string message = "Yoda said, Do or do not.
string signature;

stringSource s( message, true /*pump all+/,
new SignerFilter( prng,
signer,
new StringSink( signature )
) // SignerFilter
); // stringSource

Generating the
nonce is the API’'s

T responsibility.

DSA_PrivateKey* dsakey = dynamic_cast<DSA_PrivateKey*>(key.get());

if(1dsakey)
{

std::cout << a DSA key!" << std::endl;

loaded key is

return 1;

}
PK_Signer signer(+dsakey, "EMSAL(SHA-1)");
DataSource_Stream in(message);
byte buf[4096] = { 0 };
while(size_t got = in.read(buf, sizeof(buf)))

signer.update(buf, got);

sigfile << base64_encode(signer.signature(rng)) << std::endl;

66/75



Motivations Security Models Primitives Security Parameters Cryptographic Parameters API Simplicity Conclusion

Dream Crypto Library Requirement #6

In encryption mode, the IVs/nonces
should, whenever possible, be
generated in a transparent way and
returned by the API, as it is done
for public-key crypto.
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API Simplicity

iat encrypt(uneigned char +plaintext, ist plaintext_lea, unsigaed char ‘asd,
int aad_len, unsigned char *key, unsigned char *iv,
unsigned char *ciphertext, uasigned char *tag)

{
EVP_CIPHER CTX *ctx;
int len;
int ciphertext_len;
* Create and initialise the context */
if(1(ctx = EVE_CIPHER CTX new())) handleErrors();
{; Initialise the smccyption operstica. +/
if(1 ncryptIni ‘tx, EVP_aes_: 25 _gom(), NULL, NULL, NULL))
handleEerors ()
/* Set 1V length if default 12 bytes (96 bits) is not appropriate -/
if(1 1= EVP_CIPHER CTX ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 16, NULL)
dleErrors();
{2 Initislise kay and v ¢
= EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv)) handleErrors();
/+ Provide any AAD data. This can be called zero or more times as
. ired
/
i£(1 1= EVP_EncryptUpdate(ctx, NULL, &len, aad, aad_len))
dleErrors();
/* Provide the message to be encrypted, and obtain the curypud output.
* EVP_EncryptUpdate can be called multiple times if n
-/
101 1= &len, plai plaintext_len))
nmdl-xnerl( )i
ciphertext_len =
T iaatise]chalencryptiontfuemmaliy o shactartibyieelaribele s fas
* th ge, but this does not occur in GCM mode
./
if(1 1= EVP_EncryptFinal ex(ctx, ciphertext + len, &len)) handleErrors();
ciphertext_len += len;
/% Get the tag */
if(1 1= EVP_CIPHER CTX ctrl(ctx, EVP_CTRL GCM_GET_TAG, 16, tag))
handleErrors();
/* Clean up */
EVP_CIPHER_CTX_free(ctx);
return ciphertext_len;
}
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API Simplicity: Error Handling

RETURN VALUES

ECDSA _size() returns the maximum length signature or 0 on error.
ECDSA _sign_setup() and ECDSA _sign() return 1 if successful or 0 on error.

ECDSA _verify() and ECDSA _do_verify() return 1 for a valid signature, 0 for an invalid signature and -1 on
error. The error codes can be obtained by ERR_get_error(3).

if (!ECDSA sign (..)) { handle error (); }

if (ECDSA verify (..)) { /* good signature */..}
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Dream Crypto Library Requirement #7

= In debug mode, a crypto library could possibly
return detailed error messages.

= In production mode, a crypto library should
return only a boolean flag: OK/NOK.

m APl and error handling should be as simple as
possible.

Conclusion
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Wishful Thinking?

Crypto libraries users are not omniscient cryptographers.

A non-secure functionality is a superfluous feature that must be
killed.

Stop put security-related responsibilities on developers’
shoulders.

Refuse to generate too small keys or cryptographic groups.

Refuse with all possible energy to use obsolete/weak
cryptographic configurations.

Generating the required IV/nonces should be the library
responsibility.

Crypto libraries must be extremely simple to use.
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Conclusion

The perfect cryptographic
library does not exist (yet)!
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Thank You!

pascal@junod.info
Q@cryptopathe
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