FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Selected Areas in Cryptography '04
University of Waterloo (Canada), August 9, 2004

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description

Features High-Level Structure Round Functions Key Schedule

Security

Pseudo-randomness Linear/Differential Integral

Courtois-Pieprzyk

8-bit

Outline of this talk

- Preliminaries
- Description of the ciphers
- Security results
- Implementation issues

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries

Why ? Goals

Description Features

High-Level Structure Round Functions Key Schedule

ecurity

Pseudo-randomnes Linear/Differential Integral

Courtois-Pieprzyk

Implementation

32/64-bit

Do we *really* need new block ciphers?

- ► AES, NESSIE, CRYPTREC efforts → many "good" designs
- Most of them (probably) practically secure
- All of them sufficiently fast

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

mplementation 8-bit

32/64-bit

So why FOX?

Commercial reasons: project initiated by

- Current trends we would like to avoid:
 - Light-weight key schedule algorithms
 - Algebraic constructions for S-boxes

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ?

Goals
Description

Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

Implementation 8-bit

32/64-bit

Requirements

- ▶ 64-bit and 128-bit block sizes
- ► Efficient on 8-bit, 32/64-bit architectures, hardware
- Modest RAM/ROM consumption on low-cost architectures
- SECURE!

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why ?
Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

mplementation

8-bit 32/64-bit

FOX Family of Algorithms

- ► FOX family : *two* block ciphers
- FOX64 with a 64-bit block size
- FOX128 with a 128-bit block size
- Key length : 0 → 256 bits (multiple of 8)
- Variable rounds number (12 → 255)
- "Generic" versions of FOX: 16 rounds

FOX: a New Family of **Block Ciphers**

Pascal Junod and Serge Vaudenay

Preliminaries Why? Goals

Description Features High-Level Structure Round Functions **Key Schedule**

Security Pseudo-randomness

Lai-Massey Scheme

- ► Lai-Massey scheme with an orthomorphism
- Orthormorphism: 1-round Feistel scheme with the identity as round function
- Orthomorphism omitted in the last round

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description Features

High-Level Structure Round Functions Key Schedule

Security

Pseudo-randomness Linear/Differential Integral

Courtois-Pieprzyk

mplementation 8-bit

Lai-Massey Scheme (64-bit)

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description Features

High-Level Structure Round Functions

Key Schedule

Security

Pseudo-randomnes Linear/Differential Integral

Courtois-Pieprzyk

Implementation 8-bit

Lai-Massey Scheme (128-bit)

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Description

Features High-Level Structure

Round Functions Key Schedule

Security

Pseudo-randomne Linear/Differential

Courtois-Pieprzyk

Implementation 8-bit

Round Functions

- Based on a Substitution-Permutation Network
- Confusion ensured by 8-bit S-boxes
- Diffusion ensured by a multipermutation (aka MDS matrix)
- Key material combined with XOR operations

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

mplementation 8-bit

FOX64 Round Function

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Description
Features
High-Level Struct
Round Functions

Key Schedule

Linear/Differential

Courtois-Pieprzyk

8-bit

FOX128 Round Function

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Pseudo-randomnes
Linear/Differential
Integral

mplementation 8-bit

S-box

- 3-round Lai-Massey scheme
- Round functions are pseudo-randomly generated permutations on GF(2⁴)
- ► Algebraic degree equal to 6

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomne
Linear/Differential

Integral Courtois-Pieprzy

Implementation

mplementation 8-bit

MDS Matrices

- ▶ Linear multipermutations on GF(2⁸)ⁿ
- Generated according to my first talk!

$$mu4 \triangleq \begin{pmatrix} 0x01 & 0x01 & 0x01 & 0x02 \\ 0x01 & 0xFD & 0x02 & 0x01 \\ 0xFD & 0x02 & 0x01 & 0x01 \\ 0x02 & 0x01 & 0xFD & 0x01 \end{pmatrix}$$

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomne
Linear/Differential

Integral Courtois-Pieprzyk

mplementation 8-bit

MDS Matrices (2)

mu8≙

_	0x01	0x01	0x01	0x01	0x01	0x01	0×01	0×03
	0x01	0x03	0x82	0x02	0x04	0xFC	0x7E	0x01
	0x03	0x82	0x02	0x04	0xFC	0x7E	0x01	0x01
	0x82	0x02	0x04	0xFC	0x7E	0x01	0x03	0x01
	0x02	0x04	0xFC	0x7E	0x01	0x03	0x82	0x01
	0x04	0xFC	0x7E	0x01	0x03	0x82	0x02	0x01
	0xFC	0x7E	0x01	0x03	0x82	0x02	0x04	0x01
	0x7E	0x01	0x03	0x82	0x02	0×04	0xFC	0x01

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Features
High-Level Structure
Round Functions
Key Schedule

curity seudo-randomness inear/Differential itegral

nplementation 8-bit

Key Schedule Algorithms

- "Strong" key-schedule algorithms
- ▶ Three different versions : KS64, KS64h, and KS128
- Time to compute the subkeys = time to encrypt 6 blocks (12 for KS64h)
- No penalty in the decryption direction (on-the-fly computation)
- ▶ Recycling of the components of the round functions

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness

Integral Courtois-Pieprzyk

mplementation 8-bit

Key Schedule: Skeleton

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

> Description Features

Features High-Level Structure Round Functions

Key Schedule

Security

Pseudo-randomnes Linear/Differential Integral

Courtois-Pieprzył

Implementation 8-bit

So, why ... ?

► ... FOX's key-schedule looks like ...

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

scription

Features
High-Level Structur

Key Schedule

ecurity

Linear/Differential
Integral

Implementation 8-bit

Because ...

- Not especially required for linear/differential cryptanalysis, but ...
- ... more and more frequently, a "light" key-schedule is used to gain one, two, three, ... more rounds during an attack.
- Examples: Muller's attack against Khazad (Asiacrypt'03), Phan's impossible differential attack against AES (ILP'04), and many more...
- ▶ We estimate that the loss of key agility remains modest.

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

mplementation 8-bit

Lai-Massey and Luby-Rackoff

- Results available for the Lai-Massey scheme in the Luby-Rackoff model
- Equivalent security than for the Feistel scheme
- ► Theorem (Vaudenay, Asiacrypt'99)

 If or is an orthomorphism, then the Lai-Massey scheme equipped with independent random round functions is pseudo-random after 3 rounds and super-pseudorandom after 4 rounds.

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description Features High-Level Structure Round Functions Key Schedule

Security

Pseudo-randomness Linear/Differential

ntegral Courtois-Piepr

nplementation 8-bit

Linear/Differential Cryptanalysis

Easy fact about the Lai-Massey scheme:

► Theorem

Any differential (linear) characteristic on two rounds must involve at least one round function.

▶ Using standard results of Hong *et al.* (FSE'00):

► Theorem

The differential (resp. linear) probability of any single-path characteristic in FOX64/k/r is upper bounded by $(\mathrm{DP_{max}^{sbox}})^{2r}$ (resp. $(\mathrm{LP_{max}^{sbox}})^{2r}$). Similarly, the bounds are $(\mathrm{DP_{max}^{sbox}})^{4r}$ (resp. $(\mathrm{LP_{max}^{sbox}})^{4r}$) for FOX128/k/r.

► At least 12 rounds since $DP_{max}^{sbox} = LP_{max}^{sbox} = 2^{-4}$.

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness

Linear/Differential Integral Courtois-Pieprzyk

Implementation 8-bit

Integral Attacks

- Simple integral distinguisher on 3 rounds
- Integral distinguisher on 4 rounds (using large precomputed tables)
- ▶ Breaks 7 rounds of FOX64 (in 2¹⁹² ops) and 5 rounds of FOX128 (in 2¹²⁸ ops)

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral

Courtois-Pieprzyl

nplementation 8-bit 32/64-bit

Pure Algebraic S-boxes

- Used by most modern designs because of interesting non-linear properties.
- ▶ But ...

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries
Why?
Goals

Pescription
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential

Courtois-Pieprzyk

nplementation 8-bit

FOX S-Box

- ▶ Based on small three 4-bit S-boxes
- Courtois-Pieprzyk (Asiacrypt'02): any such small mapping can be written as an overdefined system of at least 21 quadratic equations.
- ► Checked: exactly 21 equations on GF(2)
- Not aware of any overdefined system over GF(2⁸)
- Courtois-Pieprzyk attack could break members of the FOX family within a complexity of 2¹⁷¹ to 2¹⁹².
- ► Hellman's time-memory tradeoff against any block cipher using 256-bit keys: 2^{2.256}/₃ = 2¹⁷¹.

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description Features

High-Level Structure Round Functions Key Schedule

Security

Pseudo-randomness Linear/Differential Integral

Courtois-Pieprzyk

mplementation 8-bit 32/64-bit

8-hit

- Example of an implementation of FOX64/16 on 8051:
 - 16 bytes of RAM
 - 896 bytes of ROM (included pre-computed subkeys)
 - ▶ 757 bytes of code
 - 3950 cycles to encrypt one block

FOX: a New Family of **Block Ciphers**

Pascal Junod and Serge Vaudenay

Preliminaries Why? Goals

Description Features

Key Schedule Security

Linear/Differential

8-bit

32/64-bit

- ► FOX64/16 (written in pure ASM) needs 295 clock cycles on an Intel Pentium III to encrypt one block
- ▶ According to NESSIE's figures, FOX128/16 (written in C) is 30% faster than Camellia on Alpha 21264
- Taking 12 rounds (the minimal amount of rounds), one can find at least one member of the FOX family among the three fastest block ciphers on the common 32/64-bit architectures.

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential
Integral
Courtois-Pieprzyk

nprementatio 8-bit

32/64-bit

Have a glance at

http://lasecwww.epfl.ch
http://www.mediacrypt.com
http://crypto.junod.info

for the complete specifications and the very last news about FOX!

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security
Pseudo-randomness
Linear/Differential

Integral Courtois-Pieprzyk

nplementation 3-bit

Any question?

FOX: a New Family of Block Ciphers

Pascal Junod and Serge Vaudenay

Preliminaries Why ? Goals

Description
Features
High-Level Structure
Round Functions
Key Schedule

Security

Linear/Differential
Integral

Courtois-Pieprzyk

mplementation 8-bit

