On the complexity of Matsui’s attack against DES

Pascal Junod, pascal.junod@epfl.ch

Swiss Institute of Technology, Lausanne

SAC’01, Toronto - Canada
Outline

Matsui’s linear cryptanalysis against 16-rounds DES, as proposed at Crypto’94.

• Historical Overview

• Experimental Results

• Theoretical Analysis

• Conclusion

SAC’01, Toronto - Canada
Linear Cryptanalysis Performances: Historical Overview

- [Matsui, Eurocrypt’93, Crypto’94] Linear cryptanalysis, first experimental implementation

- [Blöcher-Dichtl, FSE’94] Some observations on the application of the piling-up lemma

- [Nyberg, Eurocrypt’94] Linear hull concept

- [Harpes-Kramer-Massey, Eurocrypt’95] Generalization of linear cryptanalysis

SAC’01, Toronto - Canada
Linear Cryptanalysis Performances: Historical Overview

• [Vaudenay, 1995] Statistical cryptanalysis concept

• [Kukorelly, 1999] Theoretical study on the piling-up lemma application

• [Selçuk, Indocrypt’00] Bias estimation in linear cryptanalysis

SAC’01, Toronto - Canada
Experiment Description

• Matsui attack has been implemented using today’s technology

• Fast DES routine (bitsliced implementation on the Intel MMX architecture)

• Idle time of 12 - 18 CPUs

• 3-7 days to produce and analyze 2^{43} known pairs

• The experiment has run 21 times

SAC’01, Toronto - Canada
Experimental Results (1)

- Widely accepted attack complexity: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85 % within $C_{(0.85)}^{\text{est}} = 2^{43}$ DES computations.
Experimental Results (2)

- Real complexity $C_{(0.85)}$ seems to be lower (logarithmic scale):

- Experimental results suggest: *Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85% within $C_{(0.85)} = 2^{41}$ DES computations.*
Experimental Results (3)

Other experimental results:

- Given 2^{43} known pairs, $C(0.5) \approx 2^{38.5}$.

- Given $2^{42.5}$ known pairs, $C(0.5) \approx 2^{42}$.

- Given 2^{40} known pairs, $C(0.5) \approx 2^{51.5}$.
Analysis (1)

• Linear expression: \[P_{i_1,...,i_r} \oplus C_{j_1,...,j_s} = K_{k_1,...,k_t} \]

• The expression must be biased in order to be useful: \[\Pr[\text{Expression holds}] = \frac{1}{2} + \epsilon, |\epsilon| > 0. \]

• Wrong-key randomization hypothesis:
\[
\left| \frac{\Pr[\text{Expression holds} \mid \text{right key}] - \frac{1}{2}}{\Pr[\text{Expression holds} \mid \text{wrong key}] - \frac{1}{2}} \right| \gg 1
\]

SAC’01, Toronto - Canada
Analysis (2)

- **Assumption 1**: Bias produced by a wrong key is independent of the key

- **Assumption 2**: Bias produced by the right key is independent of the ones produced by wrong keys

- **Assumption 3**: The distribution of the biases is well approximated by a normal law
Analysis (3)

\[N/2 \quad N(1/2 + \epsilon) \]

SAC'01, Toronto - Canada
Analysis (4)

- Counting / Analysis / Sorting / Searching phases

- Success Probability: key bits sum guessing, success within a given complexity

- Complexity is function of the right subkey rank Ψ in the candidates list

- $n - 1$ wrong candidates follow a probability density f_W, the right one follows f_R.

SAC'01, Toronto - Canada
Analysis (5)

Theorem 1

\[\Pr [\Psi \leq \psi] = \int_{-\infty}^{+\infty} B_{n+1-\psi,\psi}(F_W(x)) f_R(x) \, dx \]

and

\[E[\Psi] = 1 + n \left(1 - \int_{-\infty}^{+\infty} f_R(x) F_W(x) \, dx \right) \]

where

\[B_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1 - t)^{b-1} \, dt \]

is the incomplete beta function of order \((a,b)\).

SAC’01, Toronto - Canada
Theoretical rank distribution ($\epsilon_w = 0$ and $\epsilon_R =$ piling-up approximation) for various amounts of known pairs.

SAC’01, Toronto - Canada
Analysis (7)

Some observations:

- Wrong-key randomization hypothesis holds well

- $\hat{\varepsilon}_r - \varepsilon_r$ is small (piling-up lemma approximation is OK, no linear hull effect)

- $\hat{\varepsilon}_w \neq 0$, but it doesn’t matter a lot
The experimental variances are smaller than the expected ones.
Conclusion

• Experimental complexity analysis

• Theoretical analysis

• Partial inaccuracy of the model explained by experimental observations