
Improving the Boneh-Franklin Traitor Tracing

Scheme

Pascal Junod1,2, Alexandre Karlov1,3, and Arjen K. Lenstra3,4

1 Nagravision SA, Cheseaux-sur-Lausanne, Switzerland
2 University of Applied Sciences Western Switzerland, Yverdon-les-Bains, Switzerland

3 EPFL IC LACAL, Station 14, Lausanne, Switzerland
4 Alcatel-Lucent Bell Laboratories, USA

Abstract. Traitor tracing schemes are cryptographically secure broad-
cast methods that allow identification of conspirators: if a pirate key is
generated by k traitors out of a static set of � legitimate users, then
all traitors can be identified given the pirate key. In this paper we ad-
dress three practicality and security issues of the Boneh-Franklin traitor-
tracing scheme. In the first place, without changing the original scheme,
we modify its tracing procedure in the non-black-box model such that
it allows identification of k traitors in time Õ(k2), as opposed to the
original tracing complexity Õ(�). This new tracing procedure works in-
dependently of the nature of the Reed-Solomon code used to watermark
private keys. As a consequence, in applications with billions of users it
takes just a few minutes on a common desktop computer to identify
large collusions. Secondly, we exhibit the lack of practical value of list-
decoding algorithms to identify more than k traitors. Finally, we show
that 2k traitors can derive the keys of all legitimate users and we propose
a fix to this security issue.

Keywords: Boneh-Franklin traitor tracing, Reed-Solomon codes, Ber-
lekamp-Massey algorithm, Guruswami-Sudan algorithm.

1 Introduction

Consider the following scenario: a center broadcasts data to � receivers where
only authorized users (typically, those who have paid a fee) should have access to
the data. A way to realize this, widely deployed in commercial Pay-TV systems,
is to encrypt the data using a symmetric key and to securely transmit to each
authorized receiver this key which will be stored in a tamper-proof piece of
hardware, like a smart card.

Unfortunately, tamper-resistant hardware is very difficult and costly to design,
since it is vulnerable to a wide variety of attacks (see [1,27] as two good starting
points). As a result, a malicious user (hereafter called a traitor) can attempt to
retrieve the decryption key from his receiver and, if successful, distribute it (sell
or give away) to unauthorized users (the pirates). Depending on the nature of
the encryption schemes in use, we can even imagine situations where a dishonest

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 88–104, 2009.
c© International Association for Cryptologic Research 2009

Improving the Boneh-Franklin Traitor Tracing Scheme 89

user will try to mix several legitimate keys in order to build a new one and
embed it in a pirate receiver.

The problem of identifying which receivers were compromised or which secret
keys have leaked is called traitor tracing. Usually, two modes of traitor tracing
are considered: in the black-box model, the tracing algorithm sends crafty ci-
phertexts to the pirate receiver and aims at determining which keys it uses while
observing its behavior; in the non-black-box model, we assume that the keys can
be extracted from the pirate receiver and are known to the tracing algorithm.
The black-box model is widely considered by the cryptographic community as
being a standard security model for evaluating traitor-tracing schemes security.
However, based on our practical experience, we know that it is reasonable to as-
sume that a tracing authority has at least the same technological and financial
resources to reverse-engineer a pirate receiver as a traitor had, to perform the
same operation on a legitimate receiver.

1.1 Related Work

Fiat and Naor introduced the concept of broadcast encryption in [17]. In their
model1, there exists a set of � authorized users and the broadcasting center can
dynamically specify a privileged subset of authorized users that can decrypt
selected ciphertexts (like high-value content, for instance). Later, Chor, Fiat,
and Naor [12] introduced the concept of traitor-tracing to overcome decryption
key piracy in broadcast encryption schemes. Their scheme (which was improved
by Naor and Pinkas in [33, 13]) is k-collusion resistant (or k-resilient) in the
sense that at least one traitor can be identified with high probability given a
pirate key generated by up to k traitors. Naor, Naor and Lotspiech presented
more efficient broadcast encryption schemes [32] with tracing capabilities; it was
however demonstrated by Kiayias and Pehlivanoglu [21] that the iterative nature
of the tracing procedure allows a pirate to significantly leverage the compromise
of a few keys. Although broadcast encryption and traitor-tracing are orthogonal
problems in nature, and thus frequently studied separately, they are in practice
indivisible: some trace-and-revoke schemes have been proposed accordingly [15,
16], culminating in [9]. The latter scheme, though resistant to any collusion size,
is geared towards small-scale systems and impractical for the systems of tens of
millions of users that we are dealing with and that inspired this paper; this is
mainly due to the O(

√
�) complexity of [9] in terms of key storage and bandwidth

requirements. Additionally, the tracing costs are O(�2), which also severely limits
its applicability.

Kurosawaand Desmedt [24] proposed a public-key traitor tracing scheme, which
was later broken by Stinson and Wei [40]. Boneh and Shaw [8] discussed collusion-
resistant schemes for fingerprinting digital data based on error-correcting codes.
Boneh and Franklin [5] proposed a new public-key traitor-tracing scheme also
1 Note that in this paper, we will only consider stateless receivers, i.e., receivers for

which it is not possible to guarantee synchronism with the broadcast center and
which are resettable. Broadcast encryption schemes for stateful receivers have been
proposed in [44,41].

90 P. Junod, A. Karlov, and A.K. Lenstra

based on error-correcting codes, more precisely on Reed-Solomon codes. Actually,
the traitor-tracing problemcanbe interpreted as an application ofwatermarking to
secret keys that are distributed among users. The Boneh-Franklin non-black-box
traitor tracing scheme is k-collusion resistant and deterministic in the sense that all
of the traitors are identified with probability 1 if at most k of them
collude to derive new pirate keys. The fastest claimed running time of the non-
black-box tracing algorithm is O(� log � log log �) while the best known black-box
tracing method has an exponential complexity O(

(
�
k

)
k2). Kurosawa and Yoshida

[25] have generalized the Kurosawa-Desmedt and Boneh-Franklin schemes. The
technique used by Boneh and Franklin to watermark private keys has since been
re-used by Kiayias and Yung [23] to design an asymmetric2 public-key traitor trac-
ing scheme; other examples of Reed-Solomon codes use include schemes designed
by Dodis et al. [15, 16]. Recently, Boneh et al. [7] have presented a fully-collusion
resistant traitor tracing scheme which has private keys of constant size and cipher-
texts of size O(

√
�). Finally, the low efficiency of tracing procedures in traitor trac-

ing schemes has been addressed by Silverberg et al. in [37,38]. The authors present
several schemes based on algebraic codes which enable traitors to be traced in time
polynomial in k2 log �. Recently, Billet and Phan [2] and Boneh and Naor [6] have
independently proposed traitor-tracing schemes with constant size ciphertexts and
having a black-box tracing complexity of O(t2� log �) and O(t4 log �), respectively.

1.2 Our Contributions

While we agree that improving the exponential complexity of black-box tracing
as cited above would be a very worthwhile cause to pursue, we choose to focus in
this paper, in the light of the negative results obtained by Kiayias and Yung [22],
on some security and efficiency issues that we encountered in practical applica-
tions of the Boneh-Franklin traitor-tracing scheme [5] in the non-black-box model.
Although Boneh-Franklin traitor-tracing is one of the most elegant and efficient
public-key traitor tracing schemes, it suffers from certain issues that limit its
practical applicability in large-scale systems. We point out what the problems
are and how they can be addressed. As usual, � denotes the number of legitimate
users and k the collusion threshold.

Complexity of Non-Black-Box Tracing. One of the issues is the complex-
ity of the non-black-box traitor tracing procedure which depends on �. This
is a major drawback when applied to systems of many millions of users, since
tracing would require large computational power, or could even be infeasible
in practice. We dissect the way Reed-Solomon codes are used to watermark pri-
vate keys, and we show that, contrary to what is suggested in [5], it is possible to
trace in time3 Õ(k2), i.e., with a complexity independent of �, using the

2 Asymmetric traitor tracing is a variant introduced by Pfitzmann [35] where the broad-
casting center is not necessarily trusted, thus the tracing procedure must produce un-
deniable evidence of the implication of the traitor subscribers.

3 Here, the Õ(n) notation hides the terms which are poly-logarithmic in n.

Improving the Boneh-Franklin Traitor Tracing Scheme 91

Berlekamp-Massey algorithm instead of the Berlekamp-Welch algorithm. Al-
though both algorithms require the same complexity to fully recover a noisy
Reed-Solomon codeword, the complexity of the Berlekamp-Massey algorithm can
be reduced if used for tracing only. The resulting new tracing procedure does
not require any modification of the original Boneh-Franklin scheme. In practice,
it takes us just a few minutes on a common desktop PC to trace large coalitions
in systems having hundreds of millions of users. Our result improves the results
obtained by Silverberg et al. [37, 38]. Our finding also applies to schemes using
the same watermarking technique, such as the ones described in [23,15,16]. An-
other immediate benefit we identify is the possibility to use Reed-Solomon codes
optimized specifically to allow faster decryption. In practice, for large systems
and coalitions of medium size, we speed up the decryption by almost an order
of magnitude.

Above-Threshold Tracing. Secondly, we raise an issue concerning the above-
threshold security of the Boneh-Franklin scheme and its variants. We show that
the list-decoding techniques, such as the Guruswami-Sudan algorithm, as ad-
vocated by Boneh-Franklin to trace more than k traitors, detect only a few
additional traitors, and this at a high cost.

Beyond-Threshold Tracing. Finally, we show that if an adversary is able
to recover 2k secret keys, then she is able to compute any other secret key,
including the uncompromised ones. Thus, in this case the security of the system
completely collapses. This somewhat embarrassing property is primarily due to
the fact that the linear tracing code is public. We show how this issue can be
addressed at the cost of keeping more than a single secret value in the receivers.

This paper is organized as follows. In §2 we review the Boneh-Franklin scheme
[5]. Then, in §3, we speed up both its codeword generation and tracing proce-
dures. In §4 we discuss the above-threshold tracing based on the Guruswami-
Sudan list-decoding algorithm, while in §5 we study the security of the
Boneh-Franklin scheme when the number of recovered secret keys is at least
twice the allowed threshold.

2 Boneh-Franklin Scheme

This section describes the Boneh-Franklin traitor tracing scheme [5] by first defin-
ing its encryptionanddecryptionprocedures, thenby explaining the codewordgen-
eration mechanism and finally by describing the underlying non-black-box tracing
mechanism. We adopt the notation used in [5] denoting by � the number of users
in the system and by k the maximal coalition size. Hence, the described scheme is
supposed to be secure against any collusion of at most k users.

2.1 Encryption/Decryption

Let Gq denote a group of prime order q in which the Decision Diffie-Hellman
problem [4] is hard. Typically, Gq is a subgroup of order q of Z

∗
p, where p is

92 P. Junod, A. Karlov, and A.K. Lenstra

prime and q|p− 1; alternatively, Gq can be a group of points of an elliptic curve
over a finite field.

The key generation process proceeds as follows. Let g be a generator of Gq.
For 1 ≤ j ≤ 2k, let rj ∈R Z/qZ and compute hj = grj . The public key is defined
as 〈y, h1, . . . , h2k〉 ∈ G

2k+1
q where y =

∏2k
j=1 h

αj

j ∈ Gq for random αj ∈R Z/qZ.
Here, we say that the vector α = 〈α1, . . . , α2k〉 is a representation of y with
respect to the base 〈h1, . . . , h2k〉. Note that if ρ(1), . . . , ρ(n) are n representations
of the same element of Gq with respect to the same base, then so is any convex
combination

∑n
i=1 ηiρ

(i) of the representations, where ηi ∈ Z/qZ are scalars such
that

∑n
i=1 ηi = 1.

Let Γ = {γ(1), . . . , γ(�)} be a linear space tracing code, i.e., a collection of
� codewords γ(i), for 1 ≤ i ≤ �, where each γ(i) = 〈γ(1)

j , . . . , γ
(2k)
j 〉 is a 2k-

dimensional vector over Z/qZ. The set Γ is fixed in advance and not secret, and
can thus be considered as being a public parameter of the Boneh-Franklin traitor
tracing scheme. We detail in §2.2 the codeword generation process from [5].
In §3.2 we propose a slightly different way to define Γ that has interesting prac-
tical consequences.

A private key is an element θi ∈ Z/qZ such that θi · γ(i) is a representation
of y with respect to the base 〈h1, . . . , h2k〉. Thus, the i-th private key θi can be
derived from the i-th codeword γ(i) as

θi =

∑2k
j=1 rjαj

∑2k
j=1 rjγ

(i)
j

, (1)

where, obviously, the calculation takes place in Z/qZ. To encrypt a message
m ∈ Gq, one picks a random a ∈R Z/qZ and calculates the ciphertext as 〈m ·
ya, ha

1 , . . . , h
a
2k〉. Given a ciphertext 〈s, p1, . . . , p2k〉, and the i-th secret key θi,

the message m can be recovered as:

m =
s

(
∏2k

j=1 p
γ
(i)
j

j

)θi
. (2)

The correctness follows in a straightforward way from the fact that θi · γ(i) is
a representation of y with respect to the base 〈h1, . . . , h2k〉. It follows that it
is possible to decrypt a ciphertext given any representation 〈δ1, . . . , δ2k〉 of y

with respect to the base 〈h1, . . . , h2k〉, since
∏2k

j=1(h
a
j)δj = ya; in other words,

to decrypt it suffices to have a representation of y with respect to the base
〈h1, . . . , h2k〉. Interestingly, Boneh and Franklin show in [5, Lemma 1] that if it
is infeasible to compute discrete logarithms in Gq, then convex combinations of
n < 2k given representations ρ(1), . . . , ρ(n) of y are the only representations of
y that can efficiently be constructed.

2.2 Codewords Generation

We describe the codewords γ(i) generation process from [5] which is based on
the use of Reed-Solomon codes [36]. Given the (� − 2k) × � matrix

Improving the Boneh-Franklin Traitor Tracing Scheme 93

A =

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 1 1 . . . 1
1 2 3 . . . �
12 22 32 . . . �2

...
...

...
...

1�−2k−1 2�−2k−1 3�−2k−1 . . . ��−2k−1

⎞

⎟
⎟
⎟⎟
⎟
⎠

mod q (3)

over Z/qZ, let b1, . . . , b2k be a basis of the nullspace of A. Boneh and Franklin
define Γ as the rows of the � × 2k matrix

B =

⎛

⎝
| | | |

b1 b2 b3 . . . b2k

| | | |

⎞

⎠ , (4)

also over Z/qZ. Thus, Γ contains � codewords each of length 2k. By observing
that any vector in the span of the rows of A corresponds to a polynomial of
degree at most � − 2k − 1 evaluated at the points 1, . . . , �, one can construct a
basis of the nullspace of A using Lagrange interpolation. Using this construction
the i-th codeword becomes 〈ui, iui, i

2ui, . . . , i
2k−1ui〉 where u−1

i =
∏

j �=i(i − j)
and all computations are in Z/qZ. Naive computation of the � codewords requires
Ω(�2) operations in Z/qZ. This can easily be turned into O(�) operations using
the following recursive formula:

u−1
1 =

�−1∏

j=1

(−j) and u−1
i+1 =

ui(i − 1)
i − �

for 1 ≤ i ≤ � − 1. (5)

2.3 Tracing Procedure

We briefly recall the non-black-box tracing procedure [5]. Let d ∈ (Z/qZ)2k be
a vector formed by taking a linear combination of at most k vectors in Γ . In
practice d will be a convex combination, but we do not need that here. Since
the vectors in Γ form the rows of the matrix B, we know there exists a vector
w ∈ (Z/qZ)� (having Hamming weight at most k) such that wB = d. The
tracing procedure then works as follows. First, we determine a vector4 v ∈
(Z/qZ)� such that vB = d. Since (v − w)B = 0, we know that v − w lies
in the linear span of the rows of A (recall that the rows of A span the vector
space orthogonal to the one spanned by the columns of B). In other words,
there exists a unique polynomial f of degree at most � − 2k − 1 over Z/qZ

such that v − w = 〈f(1), . . . , f(�)〉. Taking into account that w has Hamming
weight of at most k, we know that 〈f(1), . . . , f(�)〉 equals v in all but at most
k components. Hence, it is possible to use Berlekamp-Welch algorithm [42] to
find f from v, after which f gives us v − w, from which we recover w. The
Berlekamp-Welch algorithm, published in a patent [42] granted in 1986, runs in
O(�2). Asymptotically faster variants exist (see [3]), the fastest known being the
one described by Pan [34] which runs in O(� log � log log �).
4 Note that several such vectors exist.

94 P. Junod, A. Karlov, and A.K. Lenstra

As mentioned in §1.1, the best known black-box tracing procedure for the
Boneh-Franklin scheme is not efficient since it has a O(

(
�
k

)
k2) complexity. We

refer the reader to [5] for its description since it is out of the scope of this paper.
Furthermore, we note that the black-box tracing procedure is vulnerable to the
attacks described by Kiayias and Yung [22] which demonstrate that the Boneh-
Franklin scheme is essentially incapable of black-box tracing super-logarithmic
self-protecting traitor collusions unless the ciphertext size is linear in the number
of users. Those two facts considerably limit the application of black-box tracing
with the Boneh-Franklin scheme.

3 Revisiting the Tracing Mechanism

We recall several notions from coding theory. A linear code C over the vector
space (Z/qZ)� is a subspace of (Z/qZ)�. For our purposes we may assume that
C has dimension 2k with 0 ≤ 2k ≤ �. It follows that C contains q2k codewords.
The minimal distance d of C is the minimum Hamming weight of its non-zero
codewords. A code C is called maximum-distance separable (MDS) if its minimal
distance reaches the Singleton bound, i.e., if d = � − 2k + 1. A 2k × � matrix G
over Z/qZ is called a generator matrix or encoding matrix for C if its rows form
a linearly independent basis for C. Thus, C = {x ∈ (Z/qZ)� : x = zG where z ∈
(Z/qZ)2k} and C is the code associated to G. The dual code C⊥ of a linear code C
is the linear code C⊥ =

{
x ∈ (Z/qZ)� : xcT = 0 for all c ∈ C}. A reduced parity-

check matrix for the code C is an (� − 2k) × � matrix H over Z/qZ such that
C =

{
x ∈ (Z/qZ)� : xHT = 0

}
. Receiving a noisy version x̃ of a codeword x,

the vector s = x̃HT is called the syndrome. Writing x̃ = x+e, where e is called
the error pattern, we see that the syndrome s = (x+e)HT = 0+eHT = eHT

depends only on the error pattern, and not on the codeword itself. Finally, the
following lemma makes clear the link between a reduced parity-check matrix of
a linear code and its dual code.

Lemma 1. H is a parity-check matrix for the linear code C if and only if C
spans the subspace orthogonal to the row space of H.

Therefore, a reduced parity-check matrix for C is an encoding matrix for the
dual code C⊥ and conversely.

3.1 Generalized Reed-Solomon Codes

Given vectors π = (πi)�
i=1, c = (ci)�

i=1 ∈ (Z/qZ)�, a Generalized Reed-Solomon
code GRS�,2k(π, c) is defined as follows:

GRS�,2k(π, c) =
{
(cif(πi))�

i=1 : f(x) ∈ (Z/qZ)[x] and deg(f) < 2k
}

. (6)

Thus, a codeword in GRS�,2k(π, c) is a vector consisting of a polynomial of
degree less than 2k over Z/qZ evaluated at the � points π1, . . . , π� scaled by
c1, . . . , c�. It is well-known that GRS codes are MDS codes, i.e., d = � − 2k + 1.
When c = (1, 1, . . . , 1), we speak of Reed-Solomon codes. The following theorem
states that the dual of a GRS code is a GRS code (see [20, page 66] for a proof).

Improving the Boneh-Franklin Traitor Tracing Scheme 95

Theorem 1. The dual of a GRS�,2k(π, c) code is

GRS�,2k(π, c)⊥ = GRS�,�−2k(π, d) (7)

where d = (d1, . . . , d�) with d−1
i = ci

∏
j �=i(πi − πj).

The above allows us to rephrase the Boneh-Franklin codeword generation mecha-
nism described in §2.2 as follows: the matrix A defined in (3) is the generator ma-
trix of a GRS�,�−2k(π, c) code over Z/qZ with π = (1, . . . , �) and c = (1, 1, . . . , 1)
(this fact was already recognized by [23], for instance), while the matrix B de-
fined in (4) is a (transposed) reduced parity-check matrix for the same code.
Conversely, in the light of Lemma 1 and Theorem 1, the matrix BT can be seen
as a generator matrix of the dual GRS�,2k(π, d) of GRS�,�−2k(π, c), where d is as
in Theorem 1. Thus, Γ consists of vectors forming a basis of the 2k-dimensional
vector space which contains the syndromes of GRS�,�−2k(π, c).

3.2 More Efficient Codewords

The above more general framework allows us to define the code Γ in such a
way that both the codeword generation and decryption become faster without
affecting the security of the Boneh-Franklin scheme.

Using Theorem 1, we observe that in order to compute the codewords we can
avoid Lagrange interpolation and recursive formula (5): let B be the generator
matrix of a GRS�,2k(π, d) code with π = (1, 2, . . . , �) and d = (1, 1, . . . , 1),
then the i-th codeword can simply be defined as γ(i) = 〈1, i, i2, . . . , i2k−1〉, for
i = 1, 2, . . . , �. This in turn allows us to rewrite the decryption operation (2) as

m =
s

(∏2k
j=1 pij−1

j

)θi
=

s
((((

pi
2kp2k−1

)i
. . .
)i

p2

)i

p1

)θi
. (8)

Compared to (2), this replaces 2k of the 2k+1 log2 q-bit modular exponentiation
exponents by log2 �-bit ones. With � ≈ 220 and assuming 80-bit security with 160-
bit q, this results in a speedup by a factor of 7, which is much more effective than
using multi-exponentiations (cf. [30, page 617]) as suggested in [5]. In practice,
the efficiency of our decryption is comparable to [29]. Furthermore, provided
each receiver knows its identity number i, it can directly compute codeword γ(i)

without requiring knowledge of the Lagrange coefficients attached to the receiver
with identity i − 1.

We note that the semantic security of the Boneh-Franklin scheme is not im-
pacted by the nature of the code, while its tracing capabilities only depend on
the minimal distance of the code. In our case, we use Generalized Reed-Solomon
codes with the same minimal distance as the one used by Boneh and Franklin.

3.3 An Efficient Tracing Procedure

In this section, we present in two steps a new and efficient non-black-box trac-
ing procedure for the Boneh-Franklin scheme. We stress that this new tracing

96 P. Junod, A. Karlov, and A.K. Lenstra

procedure can be used for any type of Reed-Solomon and generalized Reed-
Solomon codes, being the original code described in [5], the faster code discussed
in §3.2 or the variant we will discuss in §5. First, we reduce the complexity from
O(� log � log log �) to O(�), using a technique based on the Berlekamp-Massey
algorithm [28] and Chien search [11]. Then, we improve it to expected com-
plexity Õ(k2) by replacing Chien search by the Cantor-Zassenhaus factorization
algorithm [10].

As outlined in §2.3, the Boneh-Franklin tracing procedure based on Berle-
kamp-Welch algorithm consists in finding a noisy codeword which results in the
syndrome discovered in the pirate receiver, and in decoding this codeword. More
precisely, let x and x̃ denote a codeword belonging to GRS�,�−2k(π, c) with
c = (1, 1, . . . , 1) and its noisy version, respectively. We can interpret both x
and x̃ as polynomials f(x) and f̃(x) in (Z/qZ)[x]. If no error is introduced in
the codeword, then dif(πi) = f̃i for 1 ≤ i ≤ �, where f̃(x) =

∑�
i=1 f̃ix

i−1. Let
g(x) ∈ (Z/qZ)[x] be a polynomial (hereafter called an error-locator polynomial)
of degree at most k with g(πi) = 0 for those πi’s for which dif(πi) �= f̃i. This
leads to the following system of � linear equations in � unknowns: dif(πi)g(π) =
g(π)f̃i. Solving the system, one obtains the polynomial g(x), from which the
error locations can be derived. Along with g(x), one also gets dif(x)g(x) and
thus f(x). Straightforward implementation using Gaussian reduction would lead
to O(�3) complexity. Faster approaches would be to use the Berlekamp-Welch
algorithm in O(�2) or others of complexity Õ(�) (see [42, 3, 34]).

The key observation to derive a faster tracing algorithm is to note that com-
puting a (noisy) codeword from the syndrome retrieved from a pirate receiver
and then decoding this codeword, as done above, is not necessary: actually, the
pirate syndrome itself suffices to trace the legitimate syndromes used to derive it.
Indeed, as pointed out by Massey [28], the Berlekamp-Massey algorithm allows
reconstruction of the error-locator polynomial from the syndrome only. This key
property permits us to stop the decoding process earlier for the purpose of trac-
ing and thus reduce the complexity, since we are interested in the error-locator
polynomial only and we do not need the amplitudes of the errors.

We now clarify the link between the error-locator polynomial and the syn-
drome, following [43, page 214]. Let f̃(x) = f(x) + e(x), where f̃(x), f(x) and
e(x) are the received codeword, the original codeword, and the error polynomial,
respectively. Let s(x) = s0 + s1x+ · · ·+ s2k−1x

2k−1 denote the syndrome vector
interpreted as a polynomial. Let g(x) denote an error-locator polynomial whose
zeroes are the inverses of the error locations σj = πi with 1 ≤ j ≤ k and with
i ∈ I for a cardinality k subset I of {1, 2, . . . , �}:

g(x) =
k∏

j=1

(1 − σjx) = g0 + g1x + · · · + gkxk. (9)

Let t1, t2, . . . , tk be the indices of the non-zero coefficients of e(x). Because
g(σ−1

m) = 0 for all error locations σm with 1 ≤ m ≤ k, it follows that

etmσj
mg(σ−1

m) = 0,

and thus

Improving the Boneh-Franklin Traitor Tracing Scheme 97

etm(gkσ−k+j
m + gk−1σ

−k+j+1
m + · · · + g1σ

j−1
m + g0σ

j
m) = 0 (10)

for any j. Summing (10) over m = 1, 2, . . . k gives an expression from which
Newton’s identities can be constructed:

∑k
m=1 etm(gkσ−k+j

m + gk−1σ
−k+j+1
m + · · · + g1σ

j−1
m + g0σ

j
m)

= gk

∑k
m=1 etmσj−k

m + gk−1

∑k
m=1 etmσj−k+1

m + · · · + g0

∑k
m=1 etmσj

m

= gksj−k + gk−1sj−k+1 + · · · + g1sj−1 + g0sj = 0.

The last equality comes from the fact that the following system of equations can
be written using the parity-check matrix:

s0 = et1 + et2 + · · · + etk

s1 = et1σ1 + et2σ2 + · · · + etk
σk

s2 = et1σ
2
1 + et2σ

2
2 + · · · + etk

σ2
k

. . .

s2k−1 = et1σ
2k−1
1 + et2σ

2k−1
2 + · · · + etk

σ2k−1
k .

From (9) it follows that g0 = 1, which leads to the order k linear recurrence
relation

gksj−k + · · · + g1sj−1 = −sj. (11)

Given 2k consecutive terms of an order k linear recurrence, the Berlekamp-
Massey algorithm computes the coefficients of the recurrence in time O(k2).
Because the si for i = 0, 1, . . . , 2k − 1 are known, the gi can thus be computed
directly in time O(k2).

After the error-locator polynomial g(x) has been computed, the remaining
task consists in finding its roots, which are the inverses of identities of the
traitors. Traditionally, Reed-Solomon decoders rely on the Chien search algo-
rithm [11] which searches over the possible roots. In our case, this results in
a complexity of O(�). The roots can, however, be located faster by factoriz-
ing g(1/x) using the Cantor-Zassenhaus algorithm [10] within expected time
O(k2 log k log log k(log q + log k)) = Õ(k2). This algorithm works recursively on
the squarefree polynomial g(x) whose irreducible factors5 are all of degree 1. It
is based on the fact6 that g(x) = gcd(g(x), r(x)) · gcd(g(x), r(x)(p

d−1)/2 + 1) ·
gcd(g(x), r(x)(p

d+1)/2 − 1) for any polynomial r(x) ∈ (Z/qZ)[x].
Then, the obtained roots directly reveal the identities of the traitors. The

overall complexity of our tracing procedures is Õ(k2) which is independent of �.
The latter is not the case for the schemes based on algebraic codes described by
Silverberg et al. in [37, 38].

Our method makes it possible to trace large coalitions in Boneh-Franklin
systems with a virtually unlimited number of users, and this without requiring
5 g(x) in fact fulfills these conditions if g(x) has at most k roots.
6 The interested reader will find more details about the Cantor-Zassenhaus algorithm

in [14, page 128].

98 P. Junod, A. Karlov, and A.K. Lenstra

any modification of the encryption scheme. Our implementation, based on the
GMP [31] and LiDIA [26] software libraries and working over the group of points
of an elliptic curve over a finite field of cardinality approximately 2160, allows
tracing of a coalition of k = 1024 traitors in a system of � = 200′000′000 users in
less than two minutes on a common desktop PC. These parameter values cannot
realistically be handled using the Berlekamp-Welch algorithm as described in [5].

4 Above-Threshold Tracing

In [5] Boneh and Franklin emphasize an interesting property of their scheme,
namely the possibility to trace a collusion of more than k traitors using list-
decoding techniques like the Guruswami-Sudan algorithm [18, 19]. This would
correspond to finding more than k errors in a codeword. In such cases, the
Berlekamp-Welch algorithm fails to find the polynomial f(x). The Berlekamp-
Massey approach fails as well, since it outputs a polynomial of degree k that does
not have k roots over Z/qZ. The algorithm of Guruswami and Sudan allows,
under certain circumstances, to find a candidate for the polynomial f(x). In this
section we investigate under which circumstances tracing is possible and how it
will influence system parameters. We finally show that the Guruswami-Sudan
algorithm can detect only a few additional traitors, and this at high cost.

4.1 Guruswami-Sudan Algorithm for Reed-Solomon Codes

This algorithm attempts to find the message polynomial f(x) given a received
codeword when more than k errors occurred. It can be thought of as a gener-
alization of the Berlekamp-Welch algorithm. Let � and k be as above. Given
� pairs (πi, ci) ∈ (Z/qZ)2 for 1 ≤ i ≤ �, message length � − 2k, and an error
parameter k′ ≤ � − 1 −√�(� − 2k − 1), the Guruswami-Sudan algorithm finds
all univariate polynomials f of degree at most � − 2k − 1 such that f(πi) = ci

for at least �− k′ values of i. Thus, the algorithm allows correction of at most k′

errors. It consists of two steps. In the first step a parameter r is selected and a
system of O(�r2) linear equations is solved to find a non-zero bivariate polyno-
mial Q(x, y) of a certain weighted degree7 such that Q(πi, ci) = 0 for 1 ≤ i ≤ �.
The parameter r, which is the multiplicity of the singularity of Q(x, y), is chosen
in such a way that as many errors as possible can be handled while keeping the
system of equations tractable. In the second step, factors (y − f(x)) of Q(x, y)
are determined such that deg(f(x)) ≤ � − 2k − 1. For a complete description of
the method see [18, 19]. Below we are interested in its practical feasibility (in
particular of the first step) in the context of the traitor tracing problem.

4.2 List Decoding and Traitor Tracing

In this section we have a closer look at the various parameters of of the Guruswa-
mi-Sudan algorithm. We will see that this leads to the unavoidable conclusion
that it is of little practical significance for our type of applications.
7 degx(Q(x, y))m + degy(Q(x, y))n is called the (m,n)-weighted degree of Q(x, y).

Improving the Boneh-Franklin Traitor Tracing Scheme 99

Since the traditional algorithms (such as Berlekamp-Welch) can trace up to
k traitors, the only case of interest is k′ > k. Let δ = k′ − k be the number of
additional traitors we wish to be able to trace, and let φ = � − 2k − 1. Because
at most � − 1 − √

�φ traitors can be traced, only k’s need to be considered for
which

k + δ ≤ � − 1 −
√

�φ (12)

for a δ ≥ 1.
With ω = r(�−k−δ)−1, in the first step of the Guruswami-Sudan algorithm

a system needs to be solved over Z/qZ involving �r(r + 1)/2 constraints and
(

ω + 1 − φ

2

⌊
ω

φ

⌋)(⌊
ω

φ

⌋
+ 1
)

unknowns [18, 19]. It follows that
(

ω + 1 − φ

2

⌊
ω

φ

⌋)(⌊
ω

φ

⌋
+ 1
)
≥ �r(r + 1)

2
. (13)

Furthermore, since in practice q will have at least 160 bits, it is reasonable to
limit the number of constraints to 10000 if we want to be able to store the matrix
in 2GB of memory. This leads to

�(r + 1)r
2

< 10000. (14)

Note that this immediately limits the practical applicability of the Guruswa-
mi-Sudan algorithm to tracing in systems of at most a few thousand users. This is
in sharp contrast with our syndrome-only tracing which allows millions of users.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5 6 7 8 9

� = 1024
� = 512
� = 256
� = 128
� = 64
� = 32

Additional tracing capability δ

M
in

im
al

C
oa

lit
io

n
k

Fig. 1. Minimal coalition with respect to a given above-threshold tracing capacity

100 P. Junod, A. Karlov, and A.K. Lenstra

Define the minimal coalition size as the smallest k such that (12), (13), and
(14) are satisfied. For any � and δ, this k follows from a simple search, as illus-
trated in Fig. 1 for several (small) numbers of users. For example, in a system
with � = 512 users the minimal initial coalition size is 69 in order to be able
to trace a single additional key if 70 pirates collude. In many applications, this
results in an overkill, because the ciphertext and private key, which are depen-
dent on the coalition size, become too large. As illustration, let us consider the
following case: for � = 1024 and k = 500, we get k + δ = 855, which may seem
fairly good. However, the required bandwidth to transmit the ciphertext is equal
to 1001 group elements. This is only 2.24% less than a trivial scheme involving
an individual encryption based on El-Gamal which additionally would bring nat-
ural revocation capabilities. Besides that, a system of size � = 1024 is not far
from the limit capacity of the original Berlekamp-Welch algorithm. Hence this
method is not applicable for systems with large number of users, constrained
bandwidth and key-space storage capability.

5 Beyond-Threshold Security

In practical scenarios, there are three distinct cases for the number of compro-
mised keys in a coalition, namely: at most k, between k+1 and 2k−1, and 2k keys
or more. The first case corresponds to the situation for which the Boneh-Franklin
scheme has been designed and security guarantees have been derived, while the
second case corresponds to the above-threshold tracing scenario described in §4.
In this section we discuss the third case.

Suppose that an adversary has managed to get 2k private elements θis , for
1 ≤ s ≤ 2k and assume, as before, that the vectors in Γ are public. Because
Eq. (1) over Z/qZ can be rewritten as

θ−1
is

=

∑2k
j=1 rjγ

(is)
j

∑2k
j=1 rjαj

=
2k∑

j=1

ωjγ
(is)
j (15)

with ωj = rj/
∑2k

j=1 rjαj , knowledge of the 2k private keys θis leads to a system
of 2k linear equations in the 2k unknowns ωj , for 1 ≤ j ≤ 2k. After determining
the ωj ’s using for instance Gaussian reduction, the adversary can compute any
other private key θi in the system:

θi =

⎛

⎝
2k∑

j=1

ωjγ
(i)
j

⎞

⎠

−1

.

Not only will the adversary be able to create any number of untraceable combi-
nations of keys, but he will also be able to distribute newly derived keys so that
innocent users (whose keys were a priori never compromised) may be accused of
treachery. We note that this observation applies not only to the Boneh-Franklin
scheme, but to many tracing schemes that are based on a publicly-known linear
code such as the generalizations described by Kurosawa and Yoshida [25].

Improving the Boneh-Franklin Traitor Tracing Scheme 101

An obvious way to repair this annoying property of the Boneh-Franklin scheme
would require keeping the tracing code matrix secret, while making sure that
the vectors γ(i) = 〈γ(i)

1 , . . . , γ
(i)
2k 〉 are statistically decorrelated. In that case ac-

quiring 2k representations should give an adversary no information about other
representations. This idea was already used by Kiayias and Yung in [23] for
the different goal of obtaining an asymmetric traitor-tracing scheme. A way to
achieve this would be to choose the i-th codeword γ(i) as γ(i) = 〈1, ζi, . . . , ζ

2k−1
i 〉

where ζi ∈R Z/qZ with 1 ≤ i ≤ � is drawn independently and uniformly8 at ran-
dom for each γ(i). Here, a GRS�,2k(π, d) code is used, with π = (ζ1, ζ2, . . . , ζ�)
and d = (1, 1, . . . , 1). The ith receiver has to protect the entire representation
〈θiγ

(i)
1 , . . . , θiγ

(i)
2k 〉, and thus, to store at least θi and ζi in tamper-proof memory.

Furthermore, the fast codeword generation method from §3.2 can no longer be
used.

By applying the above codeword distribution method, an adversary who ac-
quires 2k or more keys will be unable to derive any information about the tracing
codewords that are used in the representations. She will only be capable of cre-
ating combinations of the representations. If there are fewer than k + 1 keys
in a combination, we are back to a standard tracing scenario. Otherwise, com-
binations of k + 1 or more keys will be detected, but not traceable, since our
tracing algorithm will be unable to factorize the error-locator polynomial nor
the original approaches will reveal the traitors.

6 Conclusion

In this paper, we have presented new insights as well as several improvements
to the Boneh-Franklin traitor tracing scheme [5]. First of all, we revisited the
private key watermarking scheme based on Reed-Solomon codes; based on this,
we describe a new non-black-box tracing algorithm whose complexity only de-
pends on the square of the maximal coalition size k and is independent of the
total number � of users. Our new tracing algorithm does not require any change
in the encryption scheme and can be used with any generalized Reed-Solomon
codes.

This allows us to implement the scheme in a system with a virtually unlimited
number of users; in other words, the maximal coalition size is only constrained
by the channel bandwidth and the computational capacity of the receivers. This
new tracing algorithm can also be applied with any other scheme relying on
(generalized) Reed-Solomon codes to watermark the distributed private keys.

Additionally, we discussed the application of the Guruswami-Sudan list-de-
coding algorithm, whose use was proposed in [5], and showed that, in practice,
it brings only a marginal improvement in tracing capabilities, and this at high
cost.

As a final step, we studied the above-threshold security of the Boneh-Fran-
klin scheme, i.e., the malicious capabilities of an adversary having access to many
8 Note that for practical values of �, a collision between two codewords has a negligible

probability to occur.

102 P. Junod, A. Karlov, and A.K. Lenstra

more than k keys. We showed that, given a coalition size of k, an adversary who
has recovered 2k private keys or more can derive any other private key, provided
the code Γ is publicly known, as advocated in [5]. To the best of our knowledge,
this ‘feature’ has not been reported in the literature. To deal with this problem,
we suggest to keep the tracing code matrix secret and to distribute statistically
independent codewords to the receivers.

Even though the Boneh-Franklin scheme can encrypt only small messages
(basically, one group element), and even though using it in a hybrid fashion by
encrypting a symmetric session key is prone to a trivial untraceable strategy9, we
believe based on our results that, in order to fight illegitimate clones of tamper-
proof modules, the Boneh-Franklin scheme is now really worth to be considered
in scenarios where trivial untraceable strategies are unavoidable10 by design. Of
course, this statement is based on the assumption that it is possible to revoke a
traced clone by some other mechanism.

Acknowledgments

We would like to thank Olivier Billet, Olivier Brique, Nicolas Fischer, Jim Fuller,
Michael Hill, Corinne Le Buhan Jordan, André Nicoulin, Karl Osen, Martijn
Stam as well as the anonymous reviewers of PKC’09 for interesting discussions
and comments about this paper.

References

1. Anderson, R.: Security engineering – a guide to building dependable distributed
systems. Wiley, Chichester (2001)

2. Billet, O., Phan, D.: Efficient traitor tracing from collusion secure codes. In: Safavi-
Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Heidelberg
(2008)

3. Bini, D., Pan, V.: Polynomial and matrix computations: fundamental algorithms.
Progress in Theoretical Computer Science Series, vol. 1. Birkhauser Verlag, Basel
(1994)

4. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

5. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)

6. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext (manuscript
2008), http://crypto.stanford.edu/~dabo/papers/const-tt.pdf

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

8. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans-
actions on Information Theory 44(5), 1897–1905 (1998)

9 This strategy is simply to share the session key.
10 Like in Pay-TV systems using the DVB-CSA [39] standard encryption, for instance.

http://crypto.stanford.edu/~dabo/papers/const-tt.pdf

Improving the Boneh-Franklin Traitor Tracing Scheme 103

9. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace and revoke sys-
tem. In: Juels, A., Wright, R., De Capitani de Vimercati, S. (eds.) Proceedings of
the 13th ACM Conference on Computer and Communication Security, CCS 2006,
Alexandria, USA, October 30 - November 3, pp. 211–220. ACM Press, New York
(2006)

10. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation 36(154), 587–592 (1981)

11. Chien, R.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Transactions on Information Theory 10(4), 357–363 (1964)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

13. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

14. Cohen, H.: A course in computational algebraic number theory. Springer, Heidel-
berg (2000)

15. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and re-
voking. In: Rajsbaum, S. (ed.) PODC 2003, Proceedings of the Twenty-Second
ACM Symposium on Principles of Distributed Computing, July 13-16, 2003, pp.
190–199. ACM Press, Boston (2003)

16. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revok-
ing. Distributed Computing 17(4), 323–347 (2005)

17. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

18. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometric codes. In: 39th Annual Symposium on Foundations of Computer Science
(FOCS 1998), California, USA, November 8-11, 1998, pp. 28–39. IEEE Computer
Society, Los Alamitos (1998)

19. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767
(1999)

20. Hall, J.: Notes on coding theory – Generalized Reed-Solomon codes (2003),
http://www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf

21. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: how to make most of your traitor
keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer,
Heidelberg (2007)

22. Kiayias, A., Yung, M.: Self protecting pirates and black-box traitor tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

23. Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor trac-
ing. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 32–50. Springer,
Heidelberg (2003)

24. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes with
arbiter. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157.
Springer, Heidelberg (1998)

25. Kurosawa, K., Yoshida, T.: Linear code implies public-key traitor tracing. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 172–187. Springer,
Heidelberg (2002)

26. LiDIA A C++ Library for Computational Number Theory. Software,
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/

27. Mangard, S., Oswald, E., Popp, T.: Power analysis – revealing the secrets of smart
cards. Springer, Heidelberg (2007)

http://www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/

104 P. Junod, A. Karlov, and A.K. Lenstra

28. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Transactions on In-
formation Theory 15(1), 122–127 (1969)

29. McGregor, J., Yin, Y., Lee, R.: A traitor tracing scheme based on RSA for fast
decryption. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 56–74. Springer, Heidelberg (2005)

30. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of applied cryptography.
The CRC Press series on discrete mathematics and its applications. CRC Press,
Boca Raton (1997)

31. GNU Multiple Precision Arithmetic Library, http://gmplib.org.
32. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless

receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

33. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

34. Pan, V.: Faster solution of the key equation for decoding BCH error-correcting
codes. In: Leighton, F., Shor, P. (eds.) Proceedings, 29th Annual ACM Symposium
on the Theory of Computing (STOC), pp. 168–175. ACM Press, New York (1997)

35. Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996. LNCS,
vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

36. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics (SIAM) 8(2), 300–304 (1960)

37. Silverberg, A., Staddon, J., Walker, J.: Efficient traitor tracing algorithms using
list decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 175–192.
Springer, Heidelberg (2001)

38. Silverberg, A., Staddon, J., Walker, J.: Applications of list decoding to traitor
tracing. IEEE Transactions on Information Theory 49(5), 1312–1318 (2003)

39. Digital Video Broadcasting (DVB) Conditional Access Standards,
http://www.dvb.org/technology/standards/index.xml#conditional

40. Stinson, D., Wei, R.: Key preassigned traceability schemes for broadcast encryp-
tion. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 144–156.
Springer, Heidelberg (1999)

41. Wallner, D., Harder, E., Agee, R.: Key management for multicast: issues and ar-
chitectures. RFC 2627 (1999), http://www.ietf.org

42. Welch, L., Berlekamp, E.: Error correction for algebraic block codes. US Patent
4’633’470 (1986)

43. Wicker, S.: Error control systems for digital communications and storage. Prentice-
Hall, Englewood Cliffs (1995)

44. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs.
In: Proceedings of the ACM SIGCOMM 1998 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, Vancouver,
British Columbia, Canada, August 31 - September 4, 1998, pp. 68–79. ACM Press,
New York (1998)

http://gmplib.org
http://www.dvb.org/technology/standards/index.xml#conditional
http://www.ietf.org

	Introduction
	Related Work
	Our Contributions

	Boneh-Franklin Scheme
	Encryption/Decryption
	Codewords Generation
	Tracing Procedure

	Revisiting the Tracing Mechanism
	Generalized Reed-Solomon Codes
	More Efficient Codewords
	An Efficient Tracing Procedure

	Above-Threshold Tracing
	Guruswami-Sudan Algorithm for Reed-Solomon Codes
	List Decoding and Traitor Tracing

	Beyond-Threshold Security
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

