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Abstract

Since the development of cryptology in the industrial and academic worlds
in the seventies, public knowledge and expertise have grown in a tremen-
dous way, notably because of the increasing, nowadays almost ubiquitous,
presence of electronic communication means in our lives. Block ciphers
are inevitable building blocks of the security of various electronic systems.
Recently, many advances have been published in the field of public-key cryp-
tography, being in the understanding of involved security models or in the
mathematical security proofs applied to precise cryptosystems. Unfortu-
nately, this is still not the case in the world of symmetric-key cryptography
and the current state of knowledge is far from reaching such a goal. How-
ever, block and stream ciphers tend to counterbalance this lack of “provable
security” by other advantages, like high data throughput and ease of imple-
mentation.

In the first part of this thesis, we would like to add a (small) stone to
the wall of provable security of block ciphers with the (theoretical and ex-
perimental) statistical analysis of the mechanisms behind Matsui’s linear
cryptanalysis as well as more abstract models of attacks. For this purpose,
we consider the underlying problem as a statistical hypothesis testing prob-
lem and we make a heavy use of the Neyman-Pearson paradigm. Then, we
generalize the concept of linear distinguisher and we discuss the power of
such a generalization. Furthermore, we introduce the concept of sequential
distinguisher, based on sequential sampling, and of aggregate distinguish-
ers, which allows to build sub-optimal but efficient distinguishers. Finally,
we propose new attacks against reduced-round version of the block cipher
IDEA.

In the second part, we propose the design of a new family of block ciphers
named FOX. First, we study the efficiency of optimal diffusive components
when implemented on low-cost architectures, and we present several new
constructions of MDS matrices; then, we precisely describe FOX and we
discuss its security regarding linear and differential cryptanalysis, integral
attacks, and algebraic attacks. Finally, various implementation issues are
considered.
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Résumé

Depuis le développement de la cryptologie dans les mondes industriel et
académique, les connaissances et l’expertise publique ont crû de manière sou-
tenue, notamment en raison de l’omniprésence des moyens de communication
électronique dans la vie de tous les jours. Les algorithmes de chiffrement par
blocs sont ainsi des briques de base incontournables de la sécurité de nom-
breux systèmes. Récemment, de nombreuses avancées ont été publiées dans
le domaine de la cryptographie à clef publique, que ce soit dans la compré-
hension des modèles de sécurité en jeu, ou dans les preuves mathématiques de
sécurité appliquées à des systèmes bien précis. Malheureusement, le monde
de la cryptographie symétrique reste clairement en retrait, bien que la situa-
tion évolue lentement. Les algorithmes de chiffrement par blocs, ou par flot,
tendent ainsi à compenser leur manque de “sécurité prouvée” par d’autres
atouts, tels qu’un débit de chiffrement élevé et une certaine facilité d’im-
plantation.

Dans la première moitié de cette thèse, nous tentons d’ajouter une (mo-
deste) brique à l’édifice de la sécurité prouvée des algorithmes de chif-
frement par blocs en analysant (théoriquement et expérimentalement) les
mécanismes statistiques sous-jacents à la cryptanalyse linéaire de Matsui
ainsi qu’à des modèles d’attaques plus abstraits. Pour atteindre ce but,
nous interprétons le problème comme un test d’hypothèses statistiques en
utilisant notamment le paradigme de Neyman-Pearson. Nous généralisons
ensuite le concept de distingueur linéaire et nous en discutons la puissance.
Nous introduisons également le concept de distingueur séquentiel, basé sur
l’échantillonage séquentiel, ainsi que celui de distingueur à aggrégats, qui
permet de construire des distingueurs certes sub-optimaux, mais néanmoins
efficaces. Finalement, nous proposons une série de nouvelles attaques contre
des versions réduites de l’algorithme IDEA.

Dans la seconde moitié, nous proposons une nouvelle famille d’algo-
rithmes de chiffrement par blocs, baptisée FOX. Pour cela, nous étudions
sur des architectures à bas coût l’efficacité de composants de diffusion opti-
maux, et nous proposons plusieurs nouvelles constructions de matrices MDS.
Enfin, nous décrivons précisément FOX, nous étudions sa sécurité vis-à-vis
des attaques linéaires, différentielles, intégrales et algébriques, et nous dis-
cutons finalement les aspects liés à son implantation.
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Chapter 1
Introduction

Since the appearance of cryptology in the industrial and academic worlds
in the seventies, public knowledge and expertise in this fascinating scientific
domain have grown in a tremendous way, notably because of the increasing,
nowadays almost ubiquitous, presence of electronic communications means
in our lives.

Interestingly, we note that the scientific development of cryptology has
followed different paths: for instance, “provable secure” public-key cryp-
tosystems, i.e. cryptographic algorithms for which the security can be math-
ematically proved as difficult as a well-known (supposedly hard to solve)
computational problem, exist since a few years, and the involved models
of security have been seriously studied and are nowadays well understood.
Unfortunately, this is still not the case in the world of symmetric-key cryp-
tography, where algorithms are widely deployed in many applications (being
in the civilian life or for military purposes), and the current state of knowl-
edge is far from reaching such a goal. Block and stream ciphers tend to
counterbalance this lack of “provable security” by other advantages, like
high data throughput and ease of implementation, and it is not astonish-
ing that practical solutions involve both public-key and symmetric worlds,
exploiting their advantages in parallel.

During the last 30 years, the academic research on the security of block
ciphers has evolved from an empirical way to solve the problem of designing a
secure algorithm to an heuristic one, where a list of well-established and well-
understood security properties that a block cipher must fulfill in order to be
secure is available. But ultimately (and unfortunately), the experience and
the feelings of the designers often matter more for which concerns the (good
or bad) quality of the result, and more importantly, the perceived security
of a block cipher is still heavily dependent of the talent, the intuition, and
the time at disposal of the people attempting at breaking it!

Finally, we note that the gap between the present state of knowledge
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and real, practical provable security for block ciphers tends to fill only very
slowly, mainly because of the rather slow pace of the research.

Thesis Outline and Contributions

The goals of the thesis are twofold: on the one hand, we aim at adding
a (small) stone to the wall of provable security of block ciphers with the
statistical analysis of the mechanisms behind Matsui’s linear cryptanalysis.
On the other hand, we present the design of a new family of block ciphers
named FOX developed on behalf of the company MediaCrypt AG [218]. This
thesis is organized as follows:

• The chapter §2 is devoted to the description of the current (publicly
available) knowledge about block ciphers. After having reviewed some
terminology in §2.1, we describe in §2.2 the three block ciphers having
the most significant practical impact at the time of writing, namely
the former American standard, DES, and the current one, AES, as well
as IDEA, and we discuss their security. In the same section, we briefly
address the classical modes of operation of block ciphers. Then, in
§2.3, we focus on the known attacks developed to break block ciphers;
we successively discuss black-box, statistical, algebraic as well as more
“exotic” attacks. Finally, we describe in §2.4 three models of secu-
rity, namely Shannon’s perfect security, (time- or memory-) bounded
adversaries, and ad-hoc proofs of security.

• Chapter §3 begins by recalling the statistical tests framework due to
Neyman and Pearson in §3.1, since we make heavy use of it in the
subsequent sections. In §3.2, we present a new analysis of Matsui’s
linear cryptanalysis against DES, we discuss its optimality, we show
that it can be improved using an optimal key-ranking procedure, and
we finally present some experimental results issued from the imple-
mentation of both the original and the improved versions. Then, in
§3.3, we study the statistical modelization of generic distinguishers,
and we derive the precise description of optimal linear and differential
distinguishers and we analyze their performances; furthermore, we in-
troduce and discuss the concepts of generalized linear distinguishers,
of aggregate distinguishers, and of sequential distinguishers. Finally,
in §3.4, we present some new attacks on reduced-round versions of
IDEA.

• While the chapter §3 was undoubtedly oriented towards the crypt-
analysis of block ciphers, the chapter §4 is more (but not completely)
dedicated to the design of block ciphers. In §4.1, we review different
strategies commonly used to design block ciphers and we discuss their
advantages as well as their drawbacks. In §4.2, we focus on the design
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of fast diffusive components, and we present several new constructions.
Last but not least, the FOX family of block ciphers is described in §4.3,
as well as first attempts to break it, a discussion of its security, and
implementation issues.

Our contributions can be summarized as follows:

• A new statistical modelization of three variants of Matsui’s linear
cryptanalysis has been proposed and their theoretical success prob-
ability has been computed.

• The concept of “optimal key-ranking procedure” has been formally
defined, allowing the optimization of Matsui’s attack against DES.

• Matsui’s attack against DES, as well as our improved version, have
been implemented on conventional PCs and run 21 times.

• The shape of optimal computationally unbounded distinguishers be-
tween two binary random sources has been proposed, as well as tight
bounds on their advantage. These results have been applied to con-
ventional linear and differential distinguishers.

• The concept of “generalized linear distinguisher” has been proposed,
as well as the computation of their power.

• The concept of “aggregate distinguishers” has been proposed and their
benefits have been discussed.

• The concept of “sequential distinguishers”, based on sequential sam-
pling, have been proposed and they have been shown, given a fixed
advantage, to be optimal with respects to the number of required sam-
ples.

• New linear-like attacks against reduced-round versions of the block
cipher IDEA have been demonstrated.

• A study of fast diffusive components for block ciphers has been done,
and several new constructions have been proposed.

• The design of a new family of block ciphers named FOX has been pro-
posed, as well as first attempts to break it, a discussion of its resistance
towards several attacks, and a discussion of implementation issues.

Most of the results described in this thesis have been published: a paper [144]
describing the statistical modelization of Matsui’s linear cryptanalysis, as
well as experimental results derived from its implementation has been pre-
sented at Selected Areas in Cryptography in 2001. The description
of optimal linear and differential distinguishers, obtained by considering the
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task of a distinguisher as a statistical hypothesis test, the application of
Chernoff bounds derived in §3.3.2, and the discussion of sequential distin-
guishers have been published in a paper [145] presented at Eurocrypt

2003. Optimal key-ranking procedures and their application to the linear
cryptanalysis of DES have been published in a paper [149] co-written with
Serge Vaudenay and presented at Fast Software Encryption in 2003.
The FOX family of block ciphers, which is a joint work with Serge Vaude-
nay, has been the subject of a paper [150] presented at Selected Areas in

Cryptography in 2004 and has been the subject of two European patent
applications [146, 148]; the complete specifications of the ciphers have been
published as an EPFL technical report [147] and an updated and corrected
version is available in another technical report [151]. The work about fast
diffusive components, which is a joint work with Serge Vaudenay as well, is
the subject of another paper [152] presented at Selected Areas in Cryp-

tography in 2004, too. The notion of generalized linear distinguishers,
obtained in close collaboration with Thomas Baignères and Serge Vaude-
nay, has been published in [14] and presented at Asiacrypt 2004. Finally,
the new attacks against reduced round version of IDEA are described in a
paper which follows, at the time of writing, the submission process.



Chapter 2
A Brief Overview of Block Ciphers

This chapter aims at offering a wide, although inevitably not exhaustive,
overview of the world of block ciphers. It is organized as follows: §2.1
defines the terminology as well as basic concepts necessary to the good
understanding of this thesis; then, §2.2 presents and describes in details
three block ciphers which are probably the most important and the most
widely disseminated ones nowadays, namely DES, IDEA, and AES. The part
§2.3 focuses on the presentation of the current state-of-the-art in the domain
of cryptanalysis of block ciphers, and §2.4 treats different kinds of security
proofs applied to block ciphers.

2.1 Terminology

2.1.1 Basic Definitions

Roughly expressed, a symmetric-key block cipher is a cryptographic system
whose principal aim is to guarantee the confidentiality of data. Mao [198]
gives the following definition of a cryptographic system.

Definition 2.1.1 (Cryptographic system). A cryptographic system con-
sists of the following:

- a plaintext message space P which is a set of strings over some al-
phabet;

- a ciphertext message space C which is set of possible ciphertext mes-
sages;

- an encryption key space K which is the set of possible encryption keys,
and a decryption key space K′ which is the set of possible decryption
keys;

- an efficient key generation algorithm: γ : N→ K×K′;

5
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- an efficient encryption algorithm: ε : P ×K → C;

- an efficient decryption algorithm: ε′ : C × K′ → P.

For a security parameter 1`, the key generation algorithm outputs a key pair
(k, k′) ∈ K ×K′ of length `. For k ∈ K and p ∈ P, we denote by

c = εk(p)

the encryption operation and by

p = ε′k′(c)

the decryption operation. It is furthermore necessary that for all m ∈ M
and all k ∈ K, there exists k′ ∈ K′ such that

ε′k′ (εk(p)) = p

A block cipher can be seen in a simple way as a deterministic, memoryless,
invertible function mapping an n-bit plaintext block p ∈ {0, 1}n to an n-bit
ciphertext block c ∈ {0, 1}n; furthermore, this function is parametered by a
single `-bit secret key k ∈ {0, 1}`; in other words, and using the terminology
of Def. 2.1.1, ε = ε′, K = K′, and k = k′. The notion of symmetry in
block ciphers comes hence from the fact that the same key is used for both
encryption and decryption operations; the opposed notion is the asymmetric
or public-key cryptography [91,92] which uses different, related keys for both
operations.

In order that a ciphertext decrypts to a unique plaintext for a given fixed
key, it is necessary that the encryption function is a bijection; this restrict
the number of block ciphers to the (2n)! permutations on n-bit values. As
this value is extremely large1 for common values of n (64 or 128 bits), the size
of the key further restricts the number of reachable permutations. Usual key
lengths (up to 256 bits) imply that this number is actually an infinitesimally
small fraction of all possible permutations. Informally, the goal is to make it
practically impossible to retrieve the plaintext from the ciphertext without
any knowledge on the secret key.

The concept of block cipher is summarized in a formal way in Def. 2.1.2,
taken out of [221]. As the a block cipher is memoryless, we will see it as a
function and therefore use a different notation.

Definition 2.1.2 (Symmetric-Key Block Cipher). An n-bit symmetric-
key block cipher is a function e : {0, 1}n × {0, 1}` → {0, 1}n such that for
each key k ∈ {0, 1}`, the encryption function e(p, k), written ek(p), is an
invertible mapping from {0, 1}n to {0, 1}n. The inverse mapping is the de-
cryption function, denoted dk(c), where c = ek(p) denotes the ciphertext c
resulting from the encryption of plaintext p under key k.

1Using Stirling’s formula, one can show that log (2n!) ≈ 2n · (n − 1.44).
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Note that it is possible to imagine probabilistic block ciphers which take some
randomness in addition to the key as input in order to select a mapping in
a non-deterministic way; thus, each time a plaintext block p is encrypted
under the key k, the output is a set of eligible ciphertext blocks and the
function chooses one ciphertext block c out of this set. Since the encryp-
tion function is essentially one-to-many, the requirement for invertibility
implies data expansion, which is a disadvantage of randomized encryption;
furthermore, gathering “good” randomness is not a trivial problem in the
real world. However, depending on the strength of the security model under
consideration, some randomness may be required. In practice, this property
is often shifted to the use of randomized modes of operations (see §2.2.4).
We will not address probabilistic block ciphers in more details in this thesis.

Virtually all block ciphers are product ciphers, i.e. they combine at least
two or more transformations in a manner intending that the resulting cipher
is more secure than the individual components. The underlying idea is to
build a complex encryption function by combining several simple operations
which offer complementary, but individually insufficient security properties.
A very important class of product ciphers is the category of iterated block
ciphers (see Fig. 2.1). The key idea is to iterate the same round function
f several times on the plaintext block p. More precisely, an iterated block
cipher is a block cipher involving the sequential repetition of an internal
function f called a round function. Parameters include the number of rounds
r, the block bit size n and the bit size ` of the input key k from which r
subkeys k(i) (also called round keys) are derived. For invertibility purposes,
the round function f must be a bijection on the round input for each value
k(i).

Various schemes are used to build modern iterated block ciphers, like
substitution-permutation networks (SPNs), Feistel schemes and variants,
and many others; we will discuss them later on. The round keys k(i) are
derived from the key k by an algorithm named key-schedule algorithm. It-
erated block ciphers have several advantages: it is possible to implement
them in an efficient way, because one can reuse the same code or circuit in
each round. Furthermore, it is easier to analyze them in a security point of
view since several theoretical results concerning iterated block ciphers are
available.

A more “high-level” way to build a new block cipher consists in com-
bining directly block ciphers. The key point is that the keys used by the
individual block ciphers should be statistically independent; however, the
distinction is not always clear. A cascade cipher is usually defined [221] as
being the concatenation of s ≥ 2 block ciphers (called stages), each with
(statistically) independent keys: the plaintext is the input of the first stage,
the output of stage i is the input of stage i + 1 and the output of stage s
is defined to be the ciphertext. Multiple encryption is similar to cascade
ciphers, but the keys may be dependent and the stage block ciphers may
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Figure 2.1: Diagram of an r-round iterated block cipher.



— 9 —

be either a block cipher e or its corresponding decryption function d. Most
common constructions of multiple encryption are the double encryption and
triple encryption (see Def. 2.1.3 and Def. 2.1.4).

Definition 2.1.3 (Double Encryption). For a block cipher ek, double
encryption is defined as e(x) = ek2 (ek1(x)), where k1 and k2 are statistically
independent.

Definition 2.1.4 (Triple Encryption). For a block cipher ek, triple en-
cryption is defined as

e(p) = e
(3)
k3

(
e
(2)
k2

(
e
(1)
k1

(p)
))

where e(i) denotes either ek(.) or dk(.). The case

e(p) = e
(3)
k3

(
d
(2)
k2

(
e
(1)
k1

(p)
))

is called EDE triple-encryption; the sub-case k1 = k3 is called two-key triple
encryption.

2.1.2 Good and Bad Block Ciphers

The rigorous evaluation of block ciphers is an extremely difficult and time-
consuming task since several criteria have influence on the good (or bad)
quality of a block cipher:

- Security level : A very important criterion in the evaluation of a block
cipher is obviously its estimated security level. Unfortunately, the
current state of the science does not allow (up to now) to prove in a
mathematical, rigorous way whether a given (practical) block cipher
is secure or not; although the concept of perfect security [295] has
been formalized several decades ago, perfect ciphers (like the one-time
pad [321], for instance) are very impractical for a real use, as they
require at least as many key bits as the message length. This fact
explains why evaluations projects, like the AES [3], NESSIE [247], or
CRYPTREC [72] efforts, are necessary. Thus, at this time, some sub-
jectivity will inevitably be present in the estimation of the security of
a block cipher. Does a given algorithm come with a certain “proof
of security”? Does it has withstood expert cryptanalysis from several
people over a substantial time period (i.e. years)? Responses to this
kind of questions help to take a decision regarding the security crite-
rion, but do not give any formal guarantee about the security towards
(yet) unknown attacks.
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- Throughput : Block ciphers are often used to encrypt large amounts
of data; this makes throughput an important evaluation criterion as
well. Throughput is related to the complexity of the cryptographic
mapping and the degree to which the algorithm is tailored to a par-
ticular platform or implementation context. One often differentiates
hardware and software cases, the speed of the algorithm setup, the key
setup, a key change and the encryption and decryption operations.

- Flexibility : Usually, an expected important property of a block cipher
is that it offers a large flexibility at different points of view. For in-
stance, a flexible algorithm may offer several possible block and key
sizes, allowing to tailor an instance of the block cipher to precise ex-
ternal requirements. Another flexibility form concerns implementation
issues. If the block cipher under consideration can be implemented on
various platforms, i.e. on fast 32-bit, 64-bit microprocessors, on hard-
ware (either as an ASIC or on a FPGA), on low-cost 8-bit architectures
(like a smartcard) while keeping an acceptable throughput, then one
can consider it as flexible. Finally, a block cipher can be used as a
building block in various (but unusual) cryptographic constructions
(like a hash function, an authentication code, or a stream cipher); if
it offers an acceptable security level in all of these situations, then one
can consider that it is a flexible block cipher.

2.2 Examples of Block Ciphers

It is astonishing how many different designs of block ciphers have been pro-
posed in the academic literature; Fig. 2.2 aims at listing the most important
ones. Few of them have a real impact in the practical life, but most of them
suggest interesting questions and open problems about their security. In the
next parts, we describe precisely three block ciphers which are probably the
most frequently encountered ones in practice, namely DES, IDEA, and AES.

2.2.1 Data Encryption Standaard (DES)

The “Data Encryption Standard” (DES), also known as the “Data Encryp-
tion Algorithm” (DEA) by ANSI or as DEA-1 by ISO, respectively, has been
a de facto worldwide symmetric encryption standard for more than two
decades (the latest version2 of the NIST standard is [246]). In this section,
we first recall some historical perspectives and we sketch its definition, since
we will use it in a later part.

2At the time of writing, the NIST has announced that the standard will shortly be
withdrawn.
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Algorithm Reference(s) Algorithm Reference(s)

AES [245] LOKI [49, 50]
Akelarre [4] LOKI 97 [51]
Anubis [17] Lucifer [301]
BEAR [6] MacGuffin [41]
BKSQ [80] Magenta [138]
Blowfish [284] Mars [53]
Camellia [7] Misty1 [205]
CAST128 [1] Nimbus [196]
CAST256 [2] Noekeon [78]
CS Cipher [305] NUSH [184]
Crypton [186, 187] PES [181]
DEAL [163] Q [217]
DES [242] RC2 [278]
DESX [160] RC5 [277]
DFC [114] RC6 [279]
DFCv2 [118] Redoc II [75]
E2 [8] Rijndael [79, 80]
FEAL [226, 296] SAFER K-64 [199]
FEALNX [227] SAFER+ [200]
FOX §4.3 SAFER++ [201]
Frog [111] SC2000 [298]
GOST [116] Serpent [23]
Grand Cru [44] SHACAL [123]
Hasty Pudding [288] Shark [275]
Hierocrypt L1 [64] Skipjack [244]
Hierocrypt3 [63] Square [82]
ICE [177] TEA [327]
IDEA [182] Twofish [286]
Kasumi [99] Triple-DES [93]
Khafre [223] UES [124]
Khazad [18] VINO [89]
Khufru [223] XMX [232]
LION [6]

Figure 2.2: List of Block Ciphers
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DES has been designed3 by a group of permanent researchers working
in the seventies for IBM Corp: Coppersmith, Konheim, Adler, Notz, Smith,
Feistel, Tritter, Tuckerman, Meyer, Grossman, McNeil, Tuchmann, and Os-
eas.

Historical Perspectives

Interestingly, the history4 of DES is closely related to the history of “mod-
ern” cryptology. In the early 70s, non-military research about cryptographic
algorithms was nearly inexistent and very few people understood the sci-
ence of cryptology. In 1972, the former US “National Bureau of Standards”
(NBS), known nowadays as the “National Institute of Standards and Tech-
nology” (NIST), initiated a program with the goal of protecting computer
and communications data; part of this program was the development of a
single standard cryptographic algorithm, such that it could be tested and
certified, and different equipments using it could interoperate easily.

In 1973, the NBS issued a public request for proposals; the propositions
demonstrated that there was a lot of public interest in this field, but very
little expertise, since none of the submissions came only close to meeting
the requirements defined by the NBS. A second request was issued one year
later, and the NBS eventually received a promising candidate: an algorithm
based on another one developed by IBM, called Lucifer. The NBS requested
help of the “National Security Agency” (NSA), and comments by the general
public.

Many people were afraid that the NSA had modified the algorithm to
install a trapdoor, complained about the reduced key size (from 128-bit to
56-bit) and the inner working of the algorithm, since the rationales behind
the design of the algorithm were kept secret. In 1976, the NBS initiated
two workshops, one dedicated to the mathematics of the algorithm and
the possibility of a trapdoor, the other being devoted to the possibility of
increasing key’s length. For instance, Brickel et al. [47] conclude in a paper
aiming at discovering the design criteria of DES S-boxes, that

“All the structure of the S-boxes that we have described ap-
pears to be the result of design principles. The question that
remains is whether it is a complete list of the design principles
used in creating the S-boxes. This question could be answered in
the negative if further structure was discovered in the S-boxes that
did not occur in the boxes created using these design principles.”

3The names of people having worked on the design of DES have been disclosed by
Coppersmith during an invited lecture at Crypto’2000 conference. See [60] as well.

4This part is mostly inspired by the book of Schneier [283, Chapter 12], and we refer
the reader to it for more information about the history of DES.
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Despite of criticism, DES was adopted as a federal standard on Novem-
ber 23, 1976 and authorized for use on all unclassified government commu-
nications. The official and initial description of the standard can be found
in [242]. As the terms of the DES standards stipulate that it should be re-
viewed every five years, it was re-certified in 1983, 1987, 1993, and in 1999.
However, in 1997, as DES was showing some signs of old age and as it can
no more be considered as a secure algorithm (mainly because of its small
key size, see §2.3.2), the NIST has decided to launch a process5 in order to
find a successor, known as the Advanced Encryption Standard (AES).

Description of DES

DES is a Feistel cipher encrypting a 64-bit block with help of a 56-bit key.
It consists in applying an initial permutation to the plaintext, then apply-
ing 16 consecutive Feistel rounds (the final swap being omitted), and finally
applying the inverse of the initial permutation. The Feistel cipher struc-
ture [102] is guaranteed to be reversible (or, in other words, one can use
the same process, up to the subkeys order, to encrypt and to decrypt data).
Furthermore, one can notice that the function f does not need to be a bijec-
tion. The concept of Feistel cipher is formally described in Def. 2.2.1 and
Fig. 2.3 illustrates a Feistel round.

Definition 2.2.1 (Feistel Cipher). A Feistel cipher Γ is an iterated cipher

mapping a plaintext of n = 2t bits, denoted x
(0)
l ||x

(0)
r , with t-bit blocks x

(0)
l ,

and x
(0)
r to a ciphertext x

(r)
l ||x

(r)
r through an r-round process, where r ≥ 1.

5See §2.2.3 for more details about AES.
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For 0 ≤ i < r, round i maps x
(i)
l ||x

(i)
r 7→ x

(i+1)
l ||x(i+1)

r according to

Γ :

{
x

(i+1)
l = x

(i)
r

x
(i+1)
r = x

(i)
l � f(x

(i)
r , k(i+1))

where each subkey k(i), 1 ≤ i ≤ ` is derived from the key k and � is a group
law on {0, 1}t.
The overall structure of DES is illustrated in Fig. 2.4, the right part of the
figure being the key-schedule algorithm, while the left part is the Feistel
scheme.

A DES key is often expressed as a 64-bit string, where the least sig-
nificant (i.e. leftmost) bit of each byte is ignored and used as parity check
bit to ensure that the key is error-free; the process of selecting these bits
is performed by the transformation PC1 (Fig. 2.6), which eliminates the
superfluous bits and permutes the remaining ones. After this operation, a
different 48-bit subkey is generated for each of the 16 rounds of DES in the
following manner: first the 56-bit key is divided into two 28-bit registers.
Then, the halves are rotated to the left by two positions for all rounds but
the rounds number 1, 2, 9, and 16, which are rotated to the left by a single
position. After being rotated, 48 out of the 56 bits are selected and per-
muted by a compression function PC2 (Fig. 2.7). Because of the rotation, a
different subset of key bits is used in each subkey. Actually, each bit is used
in approximately 14 of the 16 rounds, but not all bits are used exactly the
same number of times.

The initial transformation IP (Fig. 2.5) and its inverse IP−1 are straight-
forward bit permutations on 64-bit strings; actually, they does not possess
any cryptographic meaning as they are key-independent GF(2)-linear oper-
ations.

The round function of DES is illustrated in Fig. 2.8 (note that the flow of
the figure goes from the right to the left). It takes a 32-bit input x and out-
puts a 32-bit value y. First, a transformation called expansion-permutation
EP expands the 32-bit input to 48 bits; this operation duplicates and per-
mutes certain bits. Then, the 48-bit round subkey is combined with the
output of EP with an exclusive-or operation (this operation being denoted
K in Fig. 2.8). The result feeds then the substitution part of the cipher.

The substitution stage is composed of eight different non-linear transfor-
mations (see Fig. 2.9) mapping 6-bit values to 4-bit ones which are usually
called “S-boxes”. Hence, the 48-bit are split into eight 6-bits blocks. Each
separate block is operated on by a separate S-box. An S-box is defined as
a table of four rows and sixteens columns. The leftmost and the rightmost
bit of the 6-bit input are combined to compute an index selecting the row,
and the four inner bits specify the index of the column. For instance, the
input 100100 to S-box S5 gives 10 as row index and 0010 as column index,
which results in the output 0001.
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Finally, the end of DES’s round function consists of a straight bit permu-
tation P which maps each output bit of the substitution stage to an output
position, which means that no bit is used twice and no bit is ignored.

Design Criteria of DES

As outlined in the previous section, the non-published design criteria of
DES have been the subject of much debates during the 80s and 90s. Ac-
cording to [67], Brown noticed in her PhD thesis [48] that

“It has been stated [173] that there were 12 (possibly 13)
criteria used, which resulted in about 1000 suitable S-boxes, of
which the implementors chose 8.”

Brickel et al. [47] mentioned that the only source of for specific design prin-
ciples seem to be responses from the NSA to a study of the DES made by
Lexar Corp. In these comments, the NSA labeled the following points as
“design criteria” for the S-boxes: (1) no S-box is a linear or affine function
of the input, (2) changing one input bit to an S-box results in changing at
least two output bits, and (3) S(x) and S(x⊕001100) must differ in at least
two bits; the following points were labeled by the NSA as “caused by design
criteria”: (1) S(x) 6= S(11ab00) for any choice of a and b, and (2) the S-boxes
were chosen to minimize the difference between the number of 1’s and 0’s in
any S-box output when any single input is held constant.

After the invention of differential cryptanalysis by Biham and Shamir
(see §2.3.3), Coppersmith revealed [60] the criteria used in the S-box design:
(1) each S-box should have six bits of input and four bits of output, (2) no
output bit of an S-box should be too close to a linear function of the input
bits, (3) each row of an S-box should contain all possible outputs, (4) if two
inputs to an S-box differ in exactly one bit, their outputs must differ by
at least two bits, (5) if two inputs to an S-box differ exactly in the middle
two bits, their outputs must differ by at least two bits, (6) if two inputs to
an S-box differ in their first two bits and agree on their last two, the two
outputs must differ, and finally, (7) for any nonzero 6-bit difference between
inputs, no more than eight of the thirty-two pairs of inputs exhibiting that
difference may result in the same output difference.

In an invited talk at the Crypto’2000 conference, Coppersmith men-
tioned some other design criteria as well: (1) when the two outer bits are
fixed, the rest is a permutation on four bits, (2) ∆in = 0x00xy00 =⇒
∆out 6= 0, where ∆in and ∆out denote the input and output differences (rel-
atively to ⊕) and finally, (3) the implementation of an S-box should use at
most 47 logical gates.
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Figure 2.4: DES High-Level Scheme and Key-Schedule Algorithm
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x0 x8 x16 x56x48x40x32x24

y0 y8 y16 y24 y32 y40 y48 y56

Figure 2.5: IP transformation

x0 x8 x16 x56x48x40x32x24

y0 y8 y16 y24 y32 y40 y48

Figure 2.6: PC1 transformation

y0 y8 y16 y24 y32 y40

x0 x8 x16 x32x24 x48x40

Figure 2.7: PC2 transformation
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Figure 2.8: DES Round Function
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S1 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

1 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8

2 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0

3 F C 8 2 4 9 1 7 5 B 3 E A 0 6 D

S2 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 F 1 8 E 6 B 3 4 9 7 2 D C 0 5 A

1 3 D 4 7 F 2 8 E C 0 1 A 6 9 B 5

2 0 E 7 B A 4 D 1 5 8 C 6 9 3 2 F

3 D 8 A 1 3 F 4 2 B 6 7 C 0 5 E 9

S3 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 A 0 9 E 6 3 F 5 1 D C 7 B 4 2 8

1 D 7 0 9 3 4 6 A 2 8 5 E C B F 1

2 D 6 4 9 8 F 3 0 B 1 2 C 5 A E 7

3 1 A D 0 6 9 8 7 4 F E 3 B 5 2 C

S4 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 7 D E 3 0 6 9 A 1 2 8 5 B C 4 F

1 D 8 B 5 6 F 0 3 4 7 2 C 1 A E 9

2 A 6 9 0 C B 7 D F 1 3 E 5 2 8 4

3 3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E

S5 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 2 C 4 1 7 A B 6 8 5 3 F D 0 E 9

1 E B 2 C 4 7 D 1 5 0 F A 3 9 8 6

2 4 2 1 B A D 7 8 F 9 C 5 6 3 0 E

3 B 8 C 7 1 E 2 D 6 F 0 9 A 4 5 3

S6 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 C 1 A F 9 2 6 8 0 D 3 4 E 7 5 B

1 A F 4 2 7 C 9 5 6 1 D E 0 B 3 8

2 9 E F 5 2 8 C 3 7 0 4 A 1 D B 6

3 4 3 2 C 9 5 F A B E 1 7 6 0 8 D

S7 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4 B 2 E F 0 8 D 3 C 9 7 5 A 6 1

1 D 0 B 7 4 9 1 A E 3 5 C 2 F 8 6

2 1 4 B D C 3 7 E A F 6 8 0 5 9 2

3 6 B D 8 1 4 A 7 9 5 0 F E 2 3 C

S8 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 D 2 8 4 6 F B 1 A 9 3 E 5 0 C 7

1 1 F D 8 A 3 7 4 C 5 6 B 0 E 9 2

2 7 B 4 1 9 C E 2 0 6 A D F 3 5 8

3 2 1 E 7 4 A 8 D F C 9 0 3 5 6 B

Figure 2.9: DES S-boxes
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Cryptanalysis of DES

More than any other block cipher, and since it was one of the first commer-
cially developed block cipher with open specifications, DES has motivated
a large amount of cryptanalytical efforts: differential cryptanalysis, linear
cryptanalysis, and Davies’ attack are generic attacks invented for the pur-
pose of breaking DES (see §2.3.3 for a description of these attacks).

The main weakness of DES is its short key length which allows nowadays
to break it practically using an exhaustive key search; for instance, a dedi-
cated machine has been built in 1998 by the Electronic Frontier Foundation
to demonstrate the vulnerability of such a small key length. More infor-
mation is given in §2.3.2. Hellman’s time-memory tradeoff (see [129] and
§2.3.2) can break DES using about 238 cells of memory and 238 operations
after a single precomputation of 256 operations.

Biham and Shamir’s differential cryptanalysis [31–33] breaks DES faster
than an exhaustive search if 247 chosen plaintexts are available6. Another
attack breaking DES faster than exhaustive search is an improvement of
Davies’ attack [83], by Biham and Biryukov [24, 25]; this known-plaintext
attack requires 250 known plaintext-ciphertext pairs.

In 1993, Matsui demonstrated [202, 203] that linear cryptanalysis can
break DES as well, provided 243 known plaintext-ciphertext pairs are avail-
able. Based on the same principles, Shimoyama and Kaneko [297] replaced
linear approximations by probabilistic quadratic relations to slightly reduce
the data complexity. Matsui’s attack was transformed later by Knudsen
and Matthiassen [166] in a chosen-plaintext attack, hence sightly reducing
the required amount of data as well. We describe and discuss experimental
results on the linear cryptanalysis of DES in §3.2.5, (see [144] as well) and
we will demonstrate how to optimally use all the information furnished by
Matsui’s probabilistic linear approximations (see §3.2.4, page 80 and [149]).

2.2.2 IDEA

IDEA was one of the first proposed alternatives to DES. It was designed by
Lai and Massey [179, 182] and is actually a “tweak” of PES [181] needed to
counter differential cryptanalysis. IDEA has withstood a large amount of
cryptanalytical effort (its popularity is due to the fact that it was chosen
as the block cipher in the first versions of the software Pretty Good Privacy
(PGP) [109] by Zimmerman) and all kinds of cryptanalytical attacks surpris-
ingly well until now. Its strength is certainly due to an elegant and simple
design approach which consists in mixing three algebraically incompatible
group operations, namely the addition of vectors over GF (2)16, denoted
“⊕”, the addition of integers over Z216 , denoted “�”, and the multiplication
in GF

(
216 + 1

)∗
, denoted “�”.

6Note that this attack still works if the data are coming from up to 233 different keys.
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Description of IDEA

IDEA encrypts 64-bit data blocks under a 128-bit key; it consists of eight
identical rounds and a final half-round (a key addition layer similar to those
in a full round). Fig. 2.10 illustrates the computational flow of one round.
Round r transforms a 64-bit input represented as a vector of four 16-bit
words to an output vector of the same size:

(x
(r)
1 , x

(r)
2 , x

(r)
3 , x

(r)
4 ) 7→ (y

(r)
1 , y

(r)
2 , y

(r)
3 , y

(r)
4 )

This process is parametered by six 16-bit subkeys denoted k
(r)
i , with 1 ≤

i ≤ 6, which are derived from the master 128-bit key by means of the key-
schedule algorithm. One evaluates the three IDEA algebraic operations as
follows: ⊕ is a simple exclusive-or operation, � is the addition modulo 216

and � is the common multiplication modulo 216+1 (where 0 is considered as
the number 216). First, two intermediate values α(r) and β(r) are computed
as follows:

α(r) =
(
x

(r)
1 � k

(r)
1

)
⊕
(
x

(r)
3 � k

(r)
3

)

β(r) =
(
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(r)
2 � k

(r)
2

)
⊕
(
x

(r)
4 � k

(r)
4

)

These two values form the input of the multiplication-addition box (MA-box)
which provides two outputs γ(r) and δ(r):

δ(r) =
((
α(r) � k(r)

5

)
� β(r)

)
� k(r)

6

γ(r) =
(
α(r) � k(r)

5

)
� δ(r)

Finally, the output of the round r is given by
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A half-round is defined to be the key-addition layer; we denote its output

(c
(r)
1 , c

(r)
2 , c

(r)
3 , c

(r)
4 ) .

The key-schedule of IDEA allows to derive fifty-two 16-bit subkeys out of the
128-bit key k. Its description is straightforward; first, order the subkeys as

k
(1)
1 , . . . , k

(1)
6 , k

(2)
1 , . . . , k

(2)
6 , . . . , k

(9)
1 , . . . , k

(9)
4

partition k into eight 16-bit blocks, and assign these blocks directly to the
first eight subkeys. Then, do the following until all remaining subkeys are
assigned: rotate k left 25 bits, partition the result, and assign these blocks
to the next eight subkeys. In Fig. 2.11, we give explicitely the value of the
subkeys (where k[0...15] means the bits 0 to 15 (inclusive) of k, k[117...4] means
the bits 117-127 and 0-4 of k, and where the leftmost bit of k is numbered
with 0).
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Figure 2.10: Round r of IDEA

Round r k
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(r)
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(r)
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1 k[0...15] k[16...31] k[32...47] k[48...63] k[64...79] k[80...95]

2 k[96...111] k[112...127] k[25...40] k[41...56] k[57...72] k[73...88]

3 k[89...104] k[105...120] k[121...8] k[9...24] k[50...65] k[66...81]

4 k[82...97] k[98...113] k[114...1] k[2...17] k[18...33] k[34...49]

5 k[75...90] k[91...106] k[107...122] k[123...10] k[11...26] k[27...42]

6 k[43...58] k[59...74] k[100...115] k[116...3] k[4...19] k[20...35]

7 k[36...51] k[52...67] k[68...83] k[84...99] k[125...12] k[13...28]

8 k[29...44] k[45...60] k[61...76] k[77...92] k[93...108] k[109...124]

8.5 k[22...37] k[38...53] k[54...69] k[70...85]

Figure 2.11: Complete Key-Schedule of IDEA
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Cryptanalysis of IDEA

The cryptanalysis process of IDEA has been a rather lengthy process (see
Fig. 2.12 for a recapitulation). To the best of our knowledge, Meier [219]
was the first one to publish an attack based on differential cryptanalysis
against up to 2.5 rounds running faster than an exhaustive search. Then,
Borst et al. [45] presented a differential-linear attack against 3 rounds and
a truncated differential attack on 3.5 rounds; Biham et al. [27] managed to
break 4.5 rounds using impossible differentials. Motivated by a paper of
Nakahara et al. [238] explaining how to break 2.5 rounds using an integral
attack, Demirci [84] was able to break up to 4 rounds; one year later, these
results were extended [85] using meet-in-the middle techniques to break up to
5 rounds slightly faster than an exhaustive search. Very recently, Nakahara
et al. [239] devised known-plaintext attacks against reduced-round versions
of IDEA using ideas of Demirci as well as an (unpublished) observation of
Biryukov. Other papers [35, 77, 128] present attacks against the full version
of IDEA, but these attacks work only for a negligible fraction of the keys.
Additionally, we will present in §3.4 some efficient linear-like and square-like
attacks on reduced-round versions of IDEA.

2.2.3 Advanced Encryption Standard (AES)

As mentioned above, due to the improvement of sciences and technology,
DES is no longer appropriate for securing electronic communications. The
NIST decided to launch in 1997 a new standardization process, known as
Advanced Encryption Standard. This process, on a competitive basis, was
completely open: anyone (i.e. non-American citizen and companies as well)
was invited to submit a candidate algorithm and to send public comments
on the other proposals. Fifteen candidates were accepted from all over the
world in 1998: CAST256, Crypton, DEAL, DFC, E2, Frog, Hasty Pudding,
LOKI 97, Magenta, Mars, RC6, Rijndael, SAFER+, Serpent, and Twofish.
Based on extensive public comments, this set of candidates was reduced
to 5 finalists (Rijndael, Mars, Serpent, Twofish and RC6) in 1999. In October
2000, Rijndael was selected to become the AES. The algorithm has been
designed by two Belgian cryptographers, Daemen and Rijmen. A book [81]
explaining the algorithm, its features and the rationales behind its design
has been published.

Description of AES

AES processes 128-bit data blocks under a 128-, 192- or 256-bit key. Its de-
sign consists in writing the 128-bit plaintext as a 4×4 square matrix of bytes
(this principle was first proposed in Square). The encryption process is made
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Rounds Data Time Attack type Ref. Note

2 210 CP 242 differential [219] Memory: 232

2 23 CP 264 square-like [84]

2.5 210 CP 2106 differential [219] Memory: 296

2.5 210 CP 232 differential [77] For one key out of 277

2.5 218 CP 258 square [238]

2.5 232 CP 259 square [238]

2.5 248 CP 279 square [238]

2.5 2 CP 237 square [238] Under 216 rel. keys

2.5 55 CP 281 square-like [84]

2.5 90 KP 290 linear-like [239]

3 229 CP 244 differential-linear [45]

3 71 CP 271 square-like [84]

3 233 CP 264 collision [85] Memory: 264

3.5 256 CP 267 truncated diff. [45]

3.5 238.5 CP 253 impossible diff. [27] Memory: 248

3.5 234 CP 282 square-like [84]

3.5 224 CP 273 collision [85]

3.5 103 CP 2103 square-like [84]

3.5 112 KP 2112 linear-like [239]

4 237 CP 270 impossible diff. [27] Memory: 248

4 234 CP 2114 square-like [84]

4 224 CP 289 collision [85] Memory: 264

4 121 KP 2114 linear-like [239]

4.5 264 CP 2112 impossible diff. [27]

4.5 224 CP 2121 collision [85] Memory: 264

5 224 CP 2126 collision [85] Memory: 264

Figure 2.12: Attacks against IDEA
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of 10, 12 or 14 rounds, for keys of 128-, 192- and 256-bit, respectively. It be-
gins with the addition (through a XOR operation) of a round subkey to the
input data. Then, a fixed number of rounds of a substitution-permutation
network (SPN) is applied.

Each round consists in four operations: first, a bijection, SubBytes, is
applied to the matrix, consisting basically of 16 byte-wise substitutions de-
fined by the same substitution table. SubBytes is a bijective mapping offering
optimal characteristics regarding non-linearity (and thus an optimal resis-
tance towards linear and differential cryptanalysis, see §2.3.3). It consists
in the inversion operation in GF

(
28
)

where elements of the field are poly-
nomials of degree at most 7 on GF (2) modulo the irreducible polynomial
x8 + x4 + x3 + x+1; it is followed by an affine transformation over GF (2)8.
Second, a circular shift called ShiftRows of all rows of the matrix is applied:
row number i, 1 ≤ i ≤ 4 is rotated to the right by i positions. Third, a linear
transformation, defined by a 4× 4 matrix over GF

(
28
)
, called MixColumns,

is applied on each column (the last round omitting the MixColumns and
ShiftRows steps); more precisely, this operation considers a column as the
coefficients of a polynomial over GF

(
28
)
/(x8 + x4 + x3 + x + 1) and the

columns are multiplied by the polynomial 0x03·x3+0x01·x2+0x01·x+0x02

modulo x4+1. MixColumns possesses optimal diffusion properties: if ` input
bytes are modified, at least 5 − ` output bytes will be modified. Finally, a
128-bit round subkey is XORed.

The decryption process consists simply in applying the respective inverse
operations in the reverse order, while the key-schedule algorithm description
may be found in [81].

Cryptanalysis of AES

At the time of writing this thesis, there is no (undisputed) attack against
the full version of AES breaking it faster than an exhaustive key search.

The designers of AES claim [81] that no 4-round differential characteristic
hold with probability greater than 2−150, and no 4-round linear characteris-
tic exist with a bias greater than 2−75, as an analysis of the propagation of
activity patterns leads to the conclusion that any linear or differential char-
acteristic activate at least 25 S-boxes. Note however that such numbers have
to be taken with a grain of salt, since there must exist at least a differential
or a linear hull which hold with a probability of 2−128 or a bias equal to 2−64,
respectively; this demonstrates that the cumulative effect of characteristics
is huge in AES. However, more recently, Keliher et al. [155–157] obtained
(with help of about 200’000 hours of computations) an upper bound on the
maximum average linear hull probability (and on the maximum expected
differential probability) of 2−92 for 9 rounds or more. Using more theoret-
ical arguments, Park et al. obtained [258] an upper bound of 2−112 and of
2−105 on the maximum differential probability, and on the maximum linear
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hull probability for 4 rounds of AES, respectively.

Biham and Keller [30] have proposed an impossible differential crypt-
analysis on 5 rounds which was later extended to 6 rounds in [59] and to 7
rounds, with help of a weakness of the key-schedule algorithm, by Phan [264].

Several types of integral attacks [103, 115, 194] have been applied with
success against reduced-round versions of AES, the best having been pro-
posed by Gilbert and Minier [115]. Furthermore, as AES has a simple alge-
braic structure, several papers have demonstrated puzzling properties, which
may eventually be exploited in the future in an attack [11,16,70,104,108,235].

2.2.4 Modes of Operation

A block cipher handles messages as data blocks. Usually, the size of data
to be encrypted is larger than the block size n of the cipher under consid-
eration. Thus, these data have to be divided into a sequence of message
blocks having the same length n. Different modes of operation, based on
an underlying block cipher, have been designed. These modes of operation
usually provide a set of desirable properties to the ciphertext blocks, such
as adding randomness to a block cipher, padding plaintexts to an arbitrary
length, control of error propagation, or even the transformation of a block
cipher in a stream cipher.

Modes of operation are often discussed according to following criteria:

- Error expansion: two types of error may occur during the transmis-
sion of a message processed by a mode of operation. Either one can
encounter slip errors which means that either bits are deleted or in-
serted in an arbitrary manner, or bit-flipping errors where some bits
are flipped. Depending on the mode in usage, these errors may cause
no error expansion, i.e. the errors are limited to the same block, finite
error expansion, i.e. the error propagates to a limited amount of block,
or even an infinite error propagation.

- Plaintext redundancy : this criterion is related to whether the mode
under consideration allows the plaintext probability distribution to
propagate to the ciphertext, either in a partial or in a full way.

- Random access: certain modes of operation allow to read or to modify
a block at random position without the need to read (or modify) other
blocks.

- Parallel processing : certain modes of operation have the property to
be processed in a parallel way; this means that every block can be
computed without the need to know other blocks. Such modes allow
very-high performance implementations.
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- Randomness addition: certain modes require some additional random-
ness, like an initialization vector, independently of the plaintext or of
the key.

In the next section, we recall briefly the five most important modes of
operation, namely ECB, CBC, OFB, CFB, and CTR.

Electronic Codebook Mode

The Electronic Codebook Mode (ECB), standardized in [137, 243], is the
most straightforward (and the most insecure) way to employ a block cipher
for encrypting (or decrypting) a sequence of messages. It just consists in
encrypting them one another separately.

Definition 2.2.2 (Electronic Codebook Mode). Let x = x1|| . . . ||xm be
a message made of m blocks of size n, and let e(.) be a block cipher having
a block length equal to n = |xi|. The encryption of x in the Electronic
Codebook Mode (ECB) under a key k is defined as

yi = ek(xi) 1 ≤ i ≤ m

while the decryption operation is

xi = dk(yi) 1 ≤ i ≤ m

where d(.) is the inverse of e(.).

The ECB mode is deterministic, meaning that two encryptions under the
same key of the same message x will result twice in the same ciphertexts y.
Furthermore, the ECB mode may leak some statistical information about
the plaintext, if the latter is very redundant: for instance, equal plaintexts
result in equal ciphertexts. As each block is treated separately and does
not depend on other blocks, the ECB mode can be implemented in a highly
parallel way; bit-flipping errors cause harm only on the block in which they
occur, while slip errors cause infinite error expansion. In practice, mainly
due to its deterministic nature, the use of ECB mode is only recommended
to encrypt a single block of data.

Cipher Block Chaining Mode

The Cipher Block Chaining Mode (CBC), standardized in [137,243], defines
a dependence between a block to be encrypted and the previous encrypted
block and make use of an Initialization Vector (IV).

Definition 2.2.3 (Cipher Block Chaining Model). Let x = x1|| . . . ||xm
be a message made of m blocks of size n, and let e(.) be a block cipher having
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a block length equal to n = |xi|. The encryption of x in the Cipher Block
Chaining Mode (CBC) under a key k is defined as

y0 = IV

yi = ek(xi ⊕ yi−1) 1 ≤ i ≤ m

while the decryption operation is

y0 = IV

xi = dk(yi)⊕ yi−1 1 ≤ i ≤ m

where d(.) is the inverse of e(.).

The security of CBC mode has been studied by Bellare et al. [19]. They
conclude that, in order that the CBC mode resists to chosen-plaintext at-
tacks, it is required that the underlying block cipher can be modeled as a
pseudo-random permutation, and that the initialization vector is secret and
chosen uniformly at random for each new message and key. However, CBC is
insecure in the chosen-ciphertext attack model; furthermore, it suffers from
a confidentiality limitation [162], as when two ciphertext blocks are equal,
one can recover the XOR of the subsequent plaintexts. This phenomenon is
likely to occur when one encrypts message whose size is about equal to the
square root of the block size of the underlying cipher.

The CBC mode resists quite well to bit-flipping errors, which cause only
the current and the next block to be incorrectly decrypted. However, slip
errors result in infinite error expansion.

Output Feedback Mode

The Output Feedback Mode (OFB) [137,243] features feeding the successive
output blocks from the underlying block cipher back to it. These feedback
bits form a sequence of bits which are used as a key for the Vernam cipher.
This mode requires an initialization vector, which however does not need to
be secret.

Definition 2.2.4 (Output Feedback Mode). Let x = x1|| . . . ||xm be a
message made of m blocks of size n, and let e(.) be a block cipher having a
block length equal to n = |xi|. The encryption of x in the Output Feedback
Mode (OFB) under a key k is defined as

κ0 = IV

κi = ek(κi−1) 1 ≤ i ≤ m
yi = xi ⊕ κi
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while the decryption operation is

κ0 = IV

κi = ek(κi−1) 1 ≤ i ≤ m
xi = yi ⊕ κi

where d(.) is the inverse of e(.).

Note that we have defined here the version of OFB which produces a key-
stream by steps which have the same size as the block size of the underlying
algorithm. This mode can be generalized to (and is usually defined as) r-bit
OFB which generates a keystream by steps of r ≤ n bits. The OFB mode
is relatively resistant to bit-flipping errors, as errors are limited to the same
segment and there is no error expansion. Slip errors cause an infinite error
propagation.

Cipher Feedback Mode

The Cipher Feedback Mode (CFB) [137, 243] features feeding the successive
cipher segments which are output from the mode back as input to the un-
derlying block cipher. Like CBC and OFB, CFB requires an initialization
vector.

Definition 2.2.5 (Cipher Feedback Mode). Let x = x1|| . . . ||xm be a
message made of m blocks of size n, and let e(.) be a block cipher having
a block length equal to n = |xi|. The encryption of x in the Cipher Block
Chaining Mode (CBC) under a key k is defined as

y0 = IV

yi = xi ⊕ ek(yi−1)

while the decryption operation is

y0 = IV

xi = yi ⊕ ek(yi−1)

where d(.) is the inverse of e(.).

Similarly to the OFB mode, the CFB mode can be generalized to (and is
usually defined as) r-bit CFB which generates a keystream by steps of r ≤ n
bits.

Counter Mode

The Counter Mode (CTR) has been proposed by Diffie and Hellman [94].
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Definition 2.2.6 (Counter Mode). Let x = x1|| . . . ||xm be a message
made of m blocks of size n, and let e(.) be a block cipher having a block
length equal to n = |xi|. The encryption of x in the Counter Mode (CTR)
under a key k is defined as

κ0 = IV

κi = ek(κi + 1 mod 2n)

yi = xi ⊕ κi

while the decryption operation is

κ0 = IV

κi = ek(κi + 1 mod 2n)

xi = yi ⊕ κi

where d(.) is the inverse of e(.).

The security of the CTR mode can be proven for adversaries able to mount
a chosen-plaintext attack if the underlying block cipher can be modeled as
a pseudo-random permutation and that the initialization counter is non-
repeating for each new message and for each re-synchronization under the
same key.

2.3 Attacks Against Block Ciphers

2.3.1 Attack Models and Terminology

The concept of attack against a block cipher includes several notions: its
outcome, the threat model in which it can be realized, its type, and its
complexity. In this part, we discuss each of these notions in a detailed
way.

Outcome of an Attack

According to the type of information recovered during an attack, Knudsen
[162] classified the possible outcomes of an attack in a hierarchical way, the
first described outcome being the most favorable for an adversary.

- Total break : an adversary recovers (or reconstructs) the secret key k.

- Global deduction: an adversary finds an algorithm functionnaly equiv-
alent to ek(.) or dk(.) without knowing the actual value of the key k.
A global deduction is possible when a block cipher contains “block
structures”, i.e. if certain subsets of the ciphertext are independent
of certain subsets of the plaintext; in this case, independently of the
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key length, such a block cipher is vulnerable to a global deduction in
a known-plaintext attack. Another possibility of global deduction is
that an attack is able to recover the round subkeys but not the key, in
the case where the key-schedule algorithm is designed to be a (secure)
one-way function, for instance.

- Instance (local) deduction: an adversary finds the plaintext (or ci-
phertext) of an intercepted ciphertext (or plaintext) which (s)he did
not obtain from the legitimate sender. An instance deduction may be
as dangerous as a total break if the number of likely plaintexts (or
ciphertexts) is small.

- Distinguishing attack : an adversary is able to tell whether the attacked
block cipher is a permutation chosen uniformly at random from the
set of all permutations or one of the 2` permutations specified by the
secret key. Distinguishing attacks are often considered as the least
serious threat in practice; however, they often can be transformed into
a key-recovery attack which may lead to a total break (or a global
deduction). Distinguishing attack are the corner stone of the Luby-
Rackoff security approach which will be discussed in §2.4.2.

Additionally to these four outcomes, Knudsen [162] defines an “information
deduction attack”: an adversary gains some information (in the sense of
Shannon’s information theory [294]) about the secret key, the plaintexts
or the ciphertexts (s)he did not had a priori. For instance, an adversary,
after an attack, may learn that some plaintexts are distributed according
to ASCII English text or that the key comes from a subset of the set of
all possible keys. In practice, an information deduction may be a serious
problem if the plaintext (or ciphertext) possesses a low entropy. In contrast
to the four above definitions, the latter one seems difficult to work with in a
mathematical, formal sense, since, by definition, Shannon’s information is a
measure between probability distributions which is independent of the fact
that an enemy knows the value of that measure or not.

Threat Model of a Block Cipher

A usual model of threats classification consists in building a hierarchy of
attacks according to the adversary’s potential (or assumed) capabilities,
ranked from the least powerful attacks to the most powerful ones.

- Ciphertext-only attack : in this kind of passive attack, an adversary
tries to deduce some information about the key (or about the plain-
text) by only observing a certain amount of ciphertexts. Usually, one
assumes some known property about the plaintext or the key; for in-
stance the adversary may know that the plaintext consists of ASCII
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characters. Block ciphers vulnerable to ciphertext-only attacks are
considered to be completely broken.

- Known-plaintext attack : in this case, one assumes that an adversary
knows a certain amount of plaintext-ciphertext pairs; the goal of this
kind of passive attack consists in finding the key. Typically, one en-
counters known-plaintext attacks in scenarios where an adversary can
observe encrypted version of well-known data, like the data exchanged
during the setup phase of a protocol, for instance. A typical exam-
ple of known-plaintext attack is the linear cryptanalysis (see §2.3.3,
page 45 and §3).

- Non-adaptive chosen-plaintext attack : when performing this kind of
active attack, the adversary is able to choose plaintexts and obtains
the corresponding ciphertexts; the plaintext must not depend on the
obtained ciphertexts: one can view them as submitted in a parallel
way. Subsequently, the adversary uses any information deduced in
order to recover either the key, or plaintext(s) corresponding to pre-
viously unseen ciphertext(s). One may encounter such a scenario for
instance when a tamper-proof module implementing a block cipher
with a fixed key falls in the hands of an adversary and where it is
not possible to recover directly the key (e.g. with physical means). A
typical example of a non-adaptive chosen-plaintext attack is the dif-
ferential cryptanalysis (see §2.3.3, page 40).

- Adaptive chosen-plaintext attack : such an attack is a chosen-plaintext
attack wherein the choice of the plaintext may depend on the cipher-
text received from previous requests.

- (Non-) Adaptive chosen-ciphertext attack : one assumes that the ad-
versary is able to decrypt arbitrary ciphertexts (in a adaptive way or
not) and obtain the corresponding plaintext with the objective of re-
covering the key or to encrypt a (not previously observed) plaintext.
In the context of block ciphers, this kind of attack is very similar to
chosen-plaintext attacks.

- Combined chosen-plaintext and chosen-ciphertext attack : this extre-
mely powerful type of adaptive attacks assumes that the adversary
can encrypt and decrypt arbitrary texts as (s)he desires. A typical
example of such an attack is Wagner’s boomerang attack (see §2.3.3,
page 44).

- Related-key attack : this model of attack assumes that the adversary
knows (or can choose) additionally some mathematical relation be-
tween the keys used for encryption and decryption, but not their val-
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ues. This kind of attack may be practical when a block cipher is used
as a primitive for a hash function, for instance.

Even if a given attack may not be considered to be a practical threat
against a block cipher, because it lives in a too strong threat model, such
an attack may be viewed as a kind of certificational attack against the block
cipher. To quote Winternitz and Hellman who have introduced this concept
in [331] together with the one of related-key attack, “if two systems are of
approximately equal complexity, and if one system succumbs to a chosen-
key cryptanalytic attack [...] while the second does not, the second is to be
preferred”.

Type of Attack

Depending on the knowledge of the internal details of a block cipher, and
depending on the information gathered when analyzing implementation de-
tails, one can classify attacks in an alternative way as follows:

- Black-box attacks: these are generic attacks which treat the block ci-
pher as a black box taking plaintexts and a key in input and outputting
ciphertext; as such attacks do not depend on any internal details of
the algorithm, one can apply them against every block cipher, and
their complexity depends only on parameters like the key length ` and
the block length n of the block ciphers under consideration. Known
black-box attacks, like exhaustive key search or generic time-memory
tradeoffs, are discussed in further details in §2.3.2.

- Shortcut attacks: on the contrary to black-box attacks, shortcut at-
tacks are based on a mathematical analysis of the internal details of
the block ciphers under consideration. The most powerful known at-
tacks are of course shortcut attacks; we discuss them from §2.3.3 to
§2.3.6.

- Side-Channel attacks: inevitably, the fate of a block cipher is to be
implemented either in software or in hardware. Side-channel attacks
exploits various physical phenomenons generated by these implemen-
tations. For instance, timing attacks can be applied when the exe-
cution time of an algorithm is dependent of the data and/or the key
value. Although proposed for the first time to attack public-key algo-
rithms [170], timing attacks were demonstrated [57, 122, 172] against
block ciphers as well. Another way to exploit weaknesses of physical
implementations of block ciphers is to measure the power consumption
of tamper-proof hardware [171] and infer some information about the
key from these measures. Finally, fault analysis exploits the following
idea, proposed by Biham and Shamir [34]: one can induce faults dur-
ing the execution of a block cipher by using any physical mean (like
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power glitches), to study the effects of these faults on the algorithm
behavior, and to extract some information about the key.

Parameters of an Attack

Attacks against block ciphers, besides the threat model under consideration,
depend on several parameters. Even if it is not always obvious to compare
in practice the power of two attacks, since their success depends heavily on
the context, these parameters are however inevitable central points in such
a comparison.

- The time complexity of an attack is the amount of computational pro-
cessing required to perform this attack successfully. The computa-
tional unit is often chosen such that one can compare the attack to
an exhaustive key search. Furthermore, one sometimes divides this
time complexity in two parts, namely the pre-computation and post-
computation times, if the attack needs to perform computations off-
line, i.e. before and after data are required.

- By data complexity, one means the number of data (like ciphertexts,
known-plaintext, chosen-plaintext, ...) required to perform an attack
in the threat model under consideration. Since these data must be
obtained from the key holder, this has a direct influence on the com-
munication complexity.

- The success probability of an attack measures the frequency at which
the attack is successful when repeated a certain number of times in a
(statistically) independent way.

- The memory complexity measures the amount of memory units nec-
essary to store either pre-computed data necessary to perform the
attack, or (possibly parts of) the data obtained in the threat model
under consideration.

Usually, the complexity of an attack is often chosen to be the largest
figure among the time, data and memory complexities, although there is no
general consensus about this fact in the academic literature.

To decide whether a block cipher is broken or not is often more a matter
of taste than something which is clearly defined. Usually, an attack is con-
sidered to be successful, and the attacked block cipher is considered to be
broken if the time complexity is significantly smaller than 2` evaluations of
the block ciphers, where ` denotes its key size; a block cipher is considered
to be partially broken if some of the plaintext bits can be discovered in time
faster than an exhaustive search.

In a similar way, for a fixed key, a block cipher can be completely char-
acterized if the encryption of all possible 2n plaintexts is available, where n
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is its block size; this puts an upper bound on the data complexity. Quoting
NESSIE’s final security report [269],

“A block cipher is considered secure if no attack requires
both time and data complexity significantly less than 2` and 2n,
respectively.”

However, it is worth mentioning that the above definition implies that all
block ciphers could be considered as broken, since Hellman’s time-memory

tradeoff (see [129] and §2.3.2) needs only in the order of 2
2`
3 operations and

2
2`
3 space to succeed (after a 2` pre-computation, which can however be

amortized on many attacks) ! We prefer adopt the following definition.

Definition 2.3.1 (Secure Block Cipher). A block cipher is considered
secure if no attack requires both time and data complexity significantly less
than the respective complexities required by any generic attack.

As it is often difficult (or it may even be impossible) to exhibit an attack
against the full version of an iterative block cipher, another common mean
to assess its security consists in taking into account the maximal number
of rounds for which an attack is known; at least, this can give some feeling
about the security margin of such a block cipher. An illustrative example
is Fig. 2.12, page 24, which summarizes the currently best known attacks
(without the attacks described in S3.4) on various reduced-round versions
of IDEA.

2.3.2 Black-Box Attacks

As outlined in the previous part, some of the known attacks against block
ciphers can be applied in a “black-box” fashion, i.e. without attacking the
internal structure of the block cipher. These attacks include the exhaustive
key search, attacks dedicated to multiple encryption, key-collision attacks,
and time-memory tradeoffs.

Exhaustive Key Search

One of the simplest way to attack a block cipher consists in trying one key
after the other until the right one is found. Typically, for a block cipher e
having a key size ` and a block size n, and provided that a very small num-
ber of known plaintext-ciphertext pairs (slightly more than

⌈
`
n

⌉
, actually,

provided the cipher is not badly flawed) encrypted under the same key k,
one can recover this key k by exhaustive search; this operation has a worst
case time complexity equal to 2` evaluations of e and an average time com-
plexity of 2`−1. If the underlying plaintext space is known to contain some
redundancy (for instance, it is ASCII text), then one can even consider a
ciphertext-only exhaustive search.
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One of the interesting properties of an exhaustive key search is that
it is an attack which can be executed in parallel on many processors or
dedicated machines, each one testing disjoint subsets of the key space. The
success probability of an exhaustive key search is equal to the fraction of
the key space searched: if one searches one tenth of the key space, then
one has roughly a 10% probability to succeed. In other terms, a fixed key
size ` defines an upper bound on the security of a block cipher. Thus, for
any secure block cipher, ` should be large enough to thwart exhaustive key
search attacks.

The minimal necessary key size to offer a comfortable security margin
has been the subject of much debates in the literature. A prominent ex-
ample is the key size of DES (see §2.2.1), which possesses a relatively small
key size (56 bit) and very early, concerns about the resistance of DES to an
exhaustive key search were raised by researchers. In 1977, Diffie and Hell-
man [93] estimate that a US$ 20’000’000 worth dedicated machine could be
built to attack one DES key. In an unpublished7 paper presented during
Eurocrypt’87 [88], Desmedt and Quisquater propose the design of a ded-
icated machine based on a chip described in [133] which could be able to
break one million DES keys in 4 weeks, or about 3000 keys each hour in
average. They estimate the cost of this machine to US$ 3’000’000. In 1990,
Garon and Outerbridge [110] estimate that a machine using special-purpose
chips costing US$ 1’000’000 could break a DES key in nine days using 1995’s
technology and in 43 hours in 2000. At Crypto’92, Eberle [96] proposes
the design of a chip able to encrypt 1 Gbit/s and estimates that an exhaus-
tive attack against DES would take less than 16 days using a US$ 1’000’000
worth machine. At the same conference, Wayner [325] estimates that a very
simple parallel architecture using a content-addressable memory can be used
to build a US$ 30’000’000 worth machine able to recover a DES key in one
day in average. In 1993, Wiener [328, 329] presented the detailed design of
a dedicated machine costing about US$ 1’000’000 able to find a DES key in
an average of 3.5 hours; in 1997, he revised [330] his estimation down to a
time of 35 minutes.

Interestingly, the small key size of DES motivated on the one hand the
construction of a dedicated machine in the spirit of the ones described in
the works cited above, and on the other hand, several projects based on
distributed software and using the idle time of many volunteer computers
spread over the Internet, for the sole purpose of demonstrating the weak-
ness of such a small key length. In 1998, the Electronic Frontier Foundation
(EFF) [97] announced the construction of a US$ 210’000 worth8 exhaustive-
search machine dedicated to attack DES, the design of the machine being

7This paper appears as Chapter 9 in [98].
8It is worth noticing that Standaert [302] estimates that in 2004, a FPGA-based ma-

chine costing US$ 12’000 should break a DES key in 3 days.
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Challenge Team Date Time

DES I Rocke Verser et al. June 1997 96d

DES II-1 distributed.net February 1998 41d 17h 18m

DES II-2 EFF DES cracker July 1998 2d 8h
DES III EFF + distributed.net January 1999 22h 15m

Figure 2.13: RSA Security DES Challenges

Year Key Size (bits)

1982 56
1990 63
2000 70
2010 78
2020 86
2030 93

Figure 2.14: Equivalent symmetric key lengths according to Lenstra and
Verheul [185]

thoroughly described in [98]; this machine is able to recover a DES key in
about 109 hours in average. The company RSA Security [281] has proposed
a sequence of challenges consisting in recovering a DES key. Fig. 2.13 sum-
marizes the results obtained, the most impressive result being a DES key
recovered in less than 24 hours. The distributed.net [95] project recov-
ered a RC5 64-bit key on July 14th, 2002 after 1757 days of work and is
attempting, at the time of writing, to recover a RC5 72-bit key.

An attempt by a group of cryptographers to address the key size prob-
lem in a rigorous way is [40]. In this document, published in 1996, they
recommend a minimal key length of 75 bits for providing adequate protec-
tion against the most serious threats. For protecting information in a secure
way during the next 20 years, they estimate that a minimal key length of
90 bits should be sufficient.

Lenstra and Verheul give in [185] a rigorous estimation of the trend in the
future of the computing power needed to break symmetric keys by exhaustive
search, taking into account the financial aspects as well as an estimation of
the technology power increase. One of their conclusions is that breaking a
78-bit symmetric key in 2010 will be as “hard” as it was to break a 56-bit
DES key in 1982. Fig. 2.14 summarizes some of their estimations.

Nowadays, modern block ciphers usually allow keys of 128, 192, 256 bits or
even more; this allows to thwart easily an exhaustive search of the key space.
Note that in all of these considerations, we have assumed a classical model
of computation. Actually, a quantum computer, implementing Grover’s
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Number of precomputed ciphertexts 228 232 240 248 256

Expected number of keys found 1 28 224 240 256

Figure 2.15: Complexity of a key-collision attack against DES

algorithm [120], is able to find a given item in an unsorted list of size n in
time O (

√
n) instead of O (n). Actually, Grover’s algorithm can be shown

to be optimal. Thus, a quantum computer will have to execute in the order
of 264 (quantum) operations to break a 128-bit key by exhaustive search.
However, the current state of the technology is far to be sufficient to build
a quantum computer.

Key-Collision Attack

Another interesting black-box attack, called key-collision attack, has been
described by Biham [20]. The principles are very simple and are based on the
birthday paradox. We assume that we are attacking a block cipher with a
key length ` and a block length n < `; furthermore, we assume that a known
plaintext p is encrypted under many distinct keys. We can build a table of p

encrypted under 2
`
2 random distinct keys and, by the birthday paradox, we

expect that, after observing about 2
`
2 ciphertexts, the probability to recover

at least one key becomes non-negligible. Fig. 2.15 gives the relation between
the number of precomputed encryptions and the expected number of keys
found in the case of a key-collision attack against DES.

Multiple Encryption

A few black-box attacks against block ciphers using multiple encryption (in
the sense of Def. 2.1.3 and Def. 2.1.4) have been discovered so far.

In 1977, Diffie and Hellman [93] noted a meet-in-the-middle (MITM)
attack on double encryption (see Def. 2.1.3), suggesting that one should
using at least three-fold encryption in a multiple-encryption scenario. This
attack works as follows: we assume first that we have a few known plaintext-
ciphertext pairs (pi, ci) encrypted with the same (unknown) key at disposal,
i.e. such that ci = ek2(ek1(pi)). Given (p1, c1), we compute ms = es(p1)
under all possible 2` possible key values s and we store the pairs (ms, s),
indexed on the ms’s in a table. Then, we decipher c1 under all 2` possible
key values t and for each pair mt = dt(c1), we look for an equality mt = ms

in the first table. Each solution clearly identifies a possible solution key pair
(s, t). Using the few other known plaintext-ciphertext pairs, one can finally
isolate the right key (k1, k2). This attacks breaks a block cipher with a `-bit
key used in double-encryption mode in time O(2`) and uses O(2`) memory
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cells. This attack has been generalized to a cascade of c ≥ 2 block ciphers
by Even and Goldreich in [100].

According to [221, page 272], Merkle describes in his PhD thesis [222] (see
[224] as well) a chosen-plaintext attack against two-key triple encryption (see
Def. 2.1.4) which needs O(2`) block cipher evaluations, O(2`) memory cells
and O(2`) chosen plaintexts, where ` is the key size. The idea is to reduce
a two-key triple encryption to a double encryption in the following way:
for all possible 2` possible key values s, compute ps = ds(0). Submit each
resulting ps as a chosen-plaintext to the encryption module and obtain the
corresponding cs. For each cs, compute xs = ds(cs). This value represents
an intermediate value x after the second of the three encryption stages, as it
is the case for the ps values. Then, sort the values ps and xt in a table. The
cases where ps = xt propose a candidate key pair (s, t). One finally isolates
the solution among the candidates using a few more known pairs.

This attack was turned in 1990 into a known-plaintext attack by van
Oorschot and Wiener [309]. Basically, given q known plaintext-ciphertext
pairs, their attack requires O(q) memory cells and a time complexity equal
to O

(
2`−log2 q

)
, where ` is the total key length. In [310], the same authors

consider ways to decrease the (costly) memory needs while increasing the
time complexity; Lucks studies in [193] the inverse strategy.

Time-Memory Tradeoffs

Hellman [129] proposed a time-memory tradeoff which can be applied to
an exhaustive key search. The idea here consists in precomputing some
information and to use it in order to speed up key searches. Practically,

this attack is able to recover an `-bit secret key after O
(
2

2`
3

)
encryption

operations by using O
(
2

2`
3

)
words of memory, whose content is initialized in

a unique precomputation step needing 2` encryptions. According to Denning
[87, page 100], Rivest proposed to use distinguished points to reduce the
search time. Some extensions of these works (both theoretical and practical)
may be found in [5, 105, 106, 175, 304].

The efficiency of Hellman’s time-memory tradeoff has been improved by
Oechslin [256] (although the asymptotic time complexity remains the same):
in his paper, he proposes a new way to pre-calculate the data which allows
to reduce significantly the number of operations during the attack itself.

2.3.3 Statistical Attacks

In this part, we present briefly a sequence of attacks exploiting undesirable
probabilistic properties of block ciphers.
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Differential Cryptanalysis and Variants

A very important attack against block ciphers is the differential cryptanal-
ysis. It was proposed9 by Biham and Shamir in 1990 to attack DES [31–33]
and then applied against several ciphers by many cryptographers with suc-
cess. In this part, we present the ideas behind differential cryptanalysis
together with some known variations and generalizations.

Differential cryptanalysis is a method which looks at ciphertext pairs
whose corresponding plaintexts have particular differences. More precisely,
let � denote the group law on the groups of bit strings used to combine the
key with the text in a block cipher and where (p′)−1 is the inverse element
of p′ in the group. Then a difference ∆ is defined as ∆p = p � (p′)−1 where
(p′)−1 is the inverse element of p′ in the group. Indeed, �-based differences
are invariant under the � operation used to mix a (fixed) key, since

(p � k) �
(
p′ � k

)−1
= p � k � k−1 � (p′)−1 = p � (p′)−1

for all p, p′ and (fixed) key k. Closely related concepts are the differential
probability and the maximal differential probability.

Definition 2.3.2 (Differential Probability). The differential probability
of a function fk relatively to a pair of differences Ω = (a, b) and a group
operation �, denoted DPf(a, b), is defined as

DPf(a, b) = Pr
X

[fk (X � a) = fk(X) � b]

and the maximal differential probability is defined to be

DPf
max = max

a6=0,b
DPf(a, b)

As this group operation is an exclusive-or (XOR), denoted ⊕, in a majority
of block ciphers, we will restrict ourselves to this operation when speaking
about differential cryptanalysis.

One can concatenate two difference pairs Ω1 =
(
ω

(1)
1 , ω

(1)
2

)
and Ω2 =

(
ω

(2)
1 , ω

(2)
2

)
if ω

(1)
2 = ω

(2)
1 . In this case, one may often approximate the

differential probability of the resulting differential pair by the product of
the differential probabilities of Ω1 and of Ω2, respectively.

Let f = f(r)◦. . .◦f(1) be an iterated block cipher made of r rounds; we are
interested in pairs (x, x′) such that f (x⊕ a) = f (x′)⊕b with high probability
for some fixed a 6= 0 and b. The sequence of differences induced by the pair
Ω = (a, b) in the r rounds of f is called [33] a differential characteristic.

9In fact, differential cryptanalysis was known before 1990. Coppersmith, which was a
member of the DES [242] design team at IBM in the early 70’s, revealed that his team was
aware of this attack back in 1974 and that they designed DES S-boxes and the permutations
in order to optimally defeat it.
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Definition 2.3.3 (r-rounds differential characteristic). An r-rounds
differential characteristic Ω is a sequence of differences defined as an (r+1)-
tuple (ω0, ω1, . . . , ωr) where ∆x = ω0 and ∆yi = ωi for 1 ≤ i ≤ r.

A heuristic assumption used to mount a differential cryptanalysis states that
the propagation of differences is independent of the (unknown) subkey values
and that the associated differential probability is the same than the average
over all possible subkey values. This assumption is known as hypothesis of
stochastic equivalence and was formally stated by Lai [179, 182].

Assumption 2.3.1 (Hypothesis of stochastic equivalence). For vir-
tually all high-probability r-round differentials (ω0, ωr),

Pr
X1X2K

[
∆Y (r) = ωr

∣∣∆X = ω0

]
= Pr

X1X2|K

[
∆Y (r) = ωr

∣∣∆X = ω0,K = k
]

holds for a substantial fraction of the subkey values k = (k1, . . . , kr).

In other words, one assumes that the variance of DPf(ω0, ωr) (taken over the
key distribution) is very small for every “interesting” pair (ω0, ωr). Thus,
an essential measure is the one of expected differential probability.

Definition 2.3.4 (Expected Differential Probability). The expected
differential probability of a function fk relatively to a pair of differences
Ω = (a, b) is defined by

EDPf(a, b) = E
[
DPfK (a, b)

]

where the expectation is taken over the key distribution.

In order to study in a formal way differential cryptanalysis, which is es-
sentially heuristic, we need a good probabilistic model of the block cipher
f under review. Lai’s PhD thesis [179] (see [182] as well) introduces the
concept of Markov cipher.

Definition 2.3.5 (Markov Cipher). An iterated block cipher with round
function y = fk(x) is a Markov cipher if there is a group operation � for
defining differences such that, for all choices of a 6= 0, b 6= 0, and of x, the
equality

Pr
K

[fK(x � a) = fK(x) � b] = EDPf(a, b)

holds.

In an iterated r-round Markov cipher, the differential probability of a differ-
ential characteristic Ω = (ω0, ω1, . . . , ωr) is independent of the actual input
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of a given round, and provided the round subkeys are statistically inde-
pendent and uniformly distributed, the individual round probabilities are
independent and may be computed as

E

[
Pr
X1X2

[
∆Y (i) = ωi, 1 ≤ i ≤ r

∣∣∣∆X = ω0

]]
=

r∏

i=1

EDPf(i)(ωi−1, ωi).

where the expectation is taken over the key.
Conceptually, no real block cipher is a Markov cipher, since most mod-

ern design use a key-schedule algorithm to generate round subkeys out of
the key. Thus, round subkeys are virtually always statistically dependent.
Anyway, Biham and Shamir [32] observe that the product of the 1-round
differential probabilities seems to result in a good approximation in the case
of a differential cryptanalysis of DES.

As observed for the first time by Lai, Massey and Murphy [182], it may
sometimes be useful to consider an r-rounds differential characteristic de-
pending only of ∆X and ∆Y (r): one calls such a “characteristic” a differ-
ential.

Definition 2.3.6 (r-rounds differential). An r-rounds differential is de-
fined as a pair of differences (ω0, ωr) where ∆x = ω0 and ∆y(r) = ωr.

In other words, the intermediate differences ω1, . . . , ωr−1 are allowed to take
any value and the cryptanalyst takes thus advantage of the cumulative effect
of many differential characteristics. The probability of an r-round differen-
tial in a Markov cipher f is then equal to

DPf(ω0, ωr) =
∑

ω1

. . .
∑

ωr−1

r∏

i=1

Pr
[
∆y(i) = ωi

∣∣∆y(i−1) = ωi−1

]

with the convention that ∆y(0) = ∆x.
Typically, the first step towards a successful differential cryptanalysis

against a block cipher consists is finding a high-probability differential char-
acteristic or differential. In order to be able to mount a key-recovery attack
against an r-rounds, one usually exploits a characteristic active on a r − s
rounds, with s small (e.g. s = 1 or s = 2). The second step consists in
“guessing” the k key bits relevant to the s first (or last, or a mixture of the
two) rounds and linked to the differential characteristic, which allows us to
in some sense to “peel” these s rounds off. By managing a counter for each
of the 2k (sub-) key candidates, one counts the number of times where a
(sub-) key leads to the expected difference pair.

In their seminal paper, Biham and Shamir [33] introduce the concept of
signal-to-noise ratio: it is the ratio, for a fixed subkey candidates, between
the number of right pairs it generates, i.e. the pairs of plaintexts which
lead to the expected output difference, and the average number of wrong
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pairs taken over all (sub-) key candidates, i.e. pairs which don’t lead to this
precise difference. To isolate the correct (sub-) key, one needs obviously a
sufficiently large number of right pairs. Biham and Shamir observed that
high values of signal-to-noise ratio (i.e. significantly larger than one) lead to
a small need in right pairs, while values equal or smaller than one lead to
an unreasonably large number of needed right pairs.

Impossible Differentials A variant of differential cryptanalysis using so-
called impossible differentials was proposed later by Biham, Biryukov and
Shamir [26] against 31 rounds of Skipjack; it is a sieving attack which looks
at differentials having a probability equal to zero (or unexpectedly low) to
occur. If a pair is decrypted to such a difference under some key, then this
key is certainly not the correct one and can be eliminated from the set of
candidates. A typical technique (called “miss-in-the-middle”) to construct
an impossible differential is to combine two differentials holding with prob-
ability 1, but which cannot be simultaneously satisfied.

Borst, Knudsen and Rijmen [45] observed in an attack against a variant
of IDEA that in the case where the signal-to-noise ratio is larger than one, the
right (sub-)key value is among the most suggested while, when the signal-
to-noise ratio is smaller than one, the right (sub-)key is the least suggested
one. According to Nakahara [237], “the overall consensus is that the case
where the signal-to-noise ratio is equal to 1 does not allow to distinguish
the right subkey from the wrong ones”. We will come back to this issue in
§3.3.4, prove this assertion and show that the signal-to-noise ratio is indeed
a quantity linked to the optimal distinguisher.

Higher-Order Differentials The concept of difference has been general-
ized by Lai in [180] and used to define an attack framework called “higher-
order differentials” by Knudsen [161].

Definition 2.3.7 (Higher-order differential). A one-round differential
of order i is an (i+ 1)-tuple (α1, . . . , α1, β) such that

∆(i)
α1,...,αi

f(x) = β

where f is a function from an additive Abelian group S to an additive Abelian
group T and

∆af(x) = f(x+ a)− f(x)

∆(i)
a1,...,ai

= ∆ai

(
∆

(i−1)
a1,...,ai−1 f(x)

)

A higher-order differential attacks works similarly as a basic differential
cryptanalysis, i.e. it exploits a high-probability higher-order difference pair.
Higher-order differential attacks have then been applied with success by
Moriai, Shimoyama and Kaneko [230] against CAST and against reduced-
round versions of Misty1 and Kasumi (see [13, 56, 127, 306, 307]).
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Figure 2.16: Boomerang distinguisher

Truncated Differentials Another variant of differential cryptanalysis is
the so-called truncated differential cryptanalysis (see Def. 2.3.8) which have
been proposed by Knudsen in [161]. In this paper, it is shown that it can be
advantageous to predict parts of the differences after each round of a cipher.
A truncated differential can be seen as a collection of common differentials.

Definition 2.3.8 (Truncated differential). Let Ω = (ω0, ωr) be a r-round
differential. If ω′0 is a subsequence of ω0 and ω′r is a subsequence of ωr, then
Ω′ = (ω′0, ω

′
r) is called a r-round truncated differential.

Truncated differentials have been used in an attack [165] against 5 of the 6
rounds of SAFER K-64, to attack [45] 3.5 rounds of IDEA and Skipjack [117,
168, 272].

Boomerang attack A more adaptive differential-like attack is Wagner’s
boomerang attack [322]. Usually, a block cipher designer may argue that a
blocker cipher is immune against differential cryptanalysis because he ob-
tains an upper bound on the probability π of any differential characteris-
tic and that one needs supposedly at least 1

π texts to break the cipher. A
boomerang distinguisher allows the attacker to beat the 1

π bounds in certain
cases.

This attack, in contrast to a classical differential attack, does not require
that the full cipher is spanned by a single differentials; it exploits high
probability differentials, possibly uncorrelated, but that jointly cover the
full cipher. To perform this attack, an attacker needs two oracles, namely
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an encryption and a decryption one. More formally, let f be a block cipher
that can be written10 as f = f1 ◦ f0. let us assume that there exists a
differential characteristic (or a differential, or a truncated differential) (δ, δ ′)
with respect to ⊕ which spans f0 with a non-negligible probability π(δ,δ′):
then δ′ = f0(p1) ⊕ f0(p2). Let c1 = f(p1) and c2 = f(p2) and let us define
λ = c1 ⊕ c3 = c2 ⊕ c4, where the differential characteristic (λ, λ′) spans f1
with a non-negligible probability π(λ,λ′) (see Fig. 2.16 for an illustration);
then,

λ′ = f−1
1 (c1)⊕ f−1

1 (c3) = f−1
1 (c2)⊕ f−1

1 (c4)

The attack works as follows: choose a pair (p1, p2) such that δ = p1 ⊕ p2

and submit it to the encryption oracle to get the pair (c1, c2). Then submit
(c1 ⊕ λ, c2 ⊕ λ) to the decryption oracle and check that the corresponding
plaintext pair (p3, p4) satisfies λ = p3⊕p4. Following Wagner’s terminology,
a right quartet is defined as a 4-tuple (p1, p2, c3, c4) for which all four differ-
ential patterns defined previously hold simultaneously. The probability πb

to observe a boomerang δ = p3 ⊕ p4 can be estimated as

πb = π2
(δ,δ′) × π2

(λ,λ′)

Improvements of the boomerang attack are the amplified boomerang at-
tack [158] of Kelsey, Kohno and Schneier and the rectangle attack of Biham,
Dunkelman and Keller [28].

Linear Cryptanalysis and Variants

Another generic way to exploit non-linearities in block ciphers is the linear
cryptanalysis. Based on earlier observations by Shamir [292] and attacks
against FEAL of Gilbert, Tardy-Corfdir, Chassé, Matsui and Yamagishi [113,
206, 308], this known-plaintext attack was proposed by Matsui in [202] in a
version dedicated to DES, which was refined later and implemented in [203].

The goal of a linear cryptanalysis is to find unbalanced linear relations:
they are Boolean equations involving the sum in GF(2) of some plaintext,
ciphertext and key bits which holds with a probability π 6= 1

2 . By linear
relation, we mean an equation

a · x⊕ b · fk(x) = 0

where a, b are vectors over GF (2) (and usually called masks), x and fk(x)
are seen as vectors over GF(2) and “·” denotes the inner dot-product. In a
similar way as in the case of linear cryptanalysis, we can define the concepts
of linear probability.

10The parts do not need to have the same size.
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Definition 2.3.9 (Linear probability). The linear probability of a func-
tion f relatively to a pair of masks (a,b) of vectors over GF (2), denoted
LPf(a,b), is defined as

LPf(a,b) =

(
2Pr
X

[a ·X = b · fk(X)] − 1

)2

and the maximal linear probability is defined to be

LPf
max = max

a,b6=0

LPf(a,b)

Similarly to the definition of expected differential probability, one can define
the expected linear probability.

Definition 2.3.10 (Expected Linear Probability). The expected linear
probability of a function fk relatively to a pair of masks (a,b) is defined by

ELPf(a,b) = E
[
LPfK (a,b)

]

where the expectation is taken over the key distribution.

We can define the concepts of r-rounds linear characteristic in a similar way
as for differential cryptanalysis.

Definition 2.3.11 (Linear characteristic). Let f = f (r) ◦ . . . ◦ f(1) be an
iterated block cipher made of r rounds. An r-round linear characteristic Λ is
a sequence of masks defined as an r + 1-tuple (λ0, λ1, . . . , λr) for 1 ≤ i ≤ r.

The linear characteristic probability is then defined as follows.

Definition 2.3.12 (Linear Characteristic Probability). The linear
characteristic probability of an r-round iterated function fk relatively to an
r-rounds linear characteristic Λ = (λ0, λ1, . . . , λr) is defined as

LCPfk(Λ) =
r∏

i=1

LPf
(i)
k (λi−1, λi)

where f(i) denotes the i-th round function equipped with a round subkey. The
expected linear characteristic probability is defined as

ELCPf(Λ) =
r∏

i=1

ELPf(i)(λi−1, λi)

Similar to the concept of differential in a differential cryptanalysis, Ny-
berg [250] has introduced the concept of linear hulls.
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Definition 2.3.13 (Linear hull). Let f = f (r) ◦ . . . ◦ f(1) be an iterated
block cipher made of r rounds. An r-round linear hull (a,b) is the set of
all r-round linear characteristics of the form (λ0, . . . , λr) where λ0 = a and
λr = b.

As in the case of a differential, the intermediate masks are allowed to take
any value; thus, one takes advantage of the cumulative effect of many linear
characteristics. The effect of linear hull explains why linear cryptanalysis’
efficiency could be underestimated in certain situations.

Some generalizations have been proposed, without any significant practi-
cal improvements: linear cryptanalysis with multiple approximations [153],
with non-linear approximations [167] or with quadratic expressions [297].
We will come back in §3 on several issues about linear cryptanalysis.

Differential-Linear Cryptanalysis

In certain precise situations, one can combine different attack techniques to
form a new attack. A nice illustration is the differential-linear cryptanal-
ysis proposed by Langford and Hellman [183]. In this attack, one uses a
differential through a fraction of the cipher which is used to create a linear
relation holding with probability 1. This linear relation is then concatenated
with other linear relations on the remaining of the cipher. This technique
was refined recently by Biham et al. [29] in order to create linear relations
holding with a probability strictly less than 1.

χ2 Attacks

This attack was proposed for the first time by Vaudenay [312] in the context
of a statistical cryptanalysis of DES: in this paper, it is shown that one
can obtain an attack slightly less powerful than a linear cryptanalysis, but
without knowing precisely what happens in the block cipher. The idea consists
in looking for relations of any kind which produce a significant deviation
from what one should expect from a uniformly distributed permutation. A
distinguisher is then built using a χ2 statistical analysis. We will come back
on the foundations of this attack in §3.

Non-Surjective Attacks

Davies’ attack11 [83] (which is probably the first statistical attack in the
modern cryptanalysis era) against DES is a statistical attack which exploits

11Note that, although this attack was published in 1995, it has been already com-
municated by Davies in 1987 to some cryptographers. According to the PhD thesis of
Gilbert [112], it may be due to the fact that DES was (and is still) broadly used in the
banking system and that it was useless to drop the confidence in this algorithm.
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the fact that the outputs from neighboring S-boxes are not uniformly dis-
tributed. This attack, which has been optimized in [24, 25] by Biham and
Biryukov, can derive a DES secret key if 250 known plaintext-ciphertext pairs
are available. Although it can theoretically be applied to any Feistel cipher,
this attack has merely historical interest: it was the third attack breaking
DES faster than an exhaustive key search.

This attack framework was generalized in 1997 by Rijmen, Preneel, and
De Win [276]. It applies to Feistel ciphers (see Fig. 2.3). More formally, let
us consider an r-round Feistel cipher on n-bit strings, where r ≥ 4 and n
and r are even numbers. Plaintexts and ciphertexts consists in two halves
xl and xr of size n

2 each. Round i of the Feistel scheme takes a n-bit input

(x
(i)
l , x

(i)
r ) and a round subkey k(i) and returns a n-bit output computed as

follows: {
x

(i+1)
l = x

(i)
r

x
(i+1)
r = x

(i)
l ⊕ f

(
k(i) ⊕ x(i)

r

)

Let us furthermore define the quantity

σr =

r/2⊕

i=1

f
(
k(2i) ⊕ x(2i−1)

r

)

We can note that σr = x
(0)
r ⊕ x(r)

l . If the function f(i) is unbalanced, i.e. if
it does not take all the outputs in its range equally often, or in other words,
it is not surjective, then σr will be unbalanced as well, provided the subkeys
are independent and uniformly distributed. If not all values of σr have the
same probability to occur, then one can gather statistical information about
the key.

2.3.4 Integral Attacks

Basically, differential cryptanalysis and variants thereof consist in studying
the propagation of differences between pairs of plaintexts (or ciphertexts).
The integral cryptanalysis [134, 169] extends this view by considering sums
of (many) values. Older and less general variants of this attack are known
as the square attack, proposed in the specifications of Square, structural
cryptanalysis of Biryukov and Shamir [36], and the saturation attack of
Lucks [195]. A central concept is the one of integral.

Definition 2.3.14 (Integral). Let G be a finite Abelian group of order k
and let us consider the product group Gn = G × . . . × G equipped with the
component-wise addition. Let M be a multiset of vectors. An integral over
M is defined as ∫

M =
∑

v∈M
v

where the summation is defined in terms of the group operation for Gn.
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In an integral attack, one will typically try to predict the values of integrals
after a certain number of rounds. One usually is interested in one of the
three following cases: all i-th components are equal, all components are
different or all i-th components sum to a (predicted in advance) constant.

2.3.5 Algebraic Attacks

In his seminal paper [295], Shannon stated that breaking of a block cipher
should “require as much work as solving a system of simultaneous equations
in a large number of unknowns of a complex type”. Some preliminary at-
tempts in this direction is the early work of Schaumüller-Bichl [282] in an
application to DES, but without much practical success.

Interpolation Attack

A purely algebraic (and practical) way to break block ciphers is the in-
terpolation attack proposed by Knudsen and Jakobsen [142]. It is based
on the well-known Lagrange’s formula: if F is a field, the unique polyno-
mial p(x) ∈ F[x] of degree at most n − 1 such that p(xi) = yi for n pairs
(xi, yi) ∈ F2 is equal to

p(x) =

n∑

i=1

yi
∏

1≤j≤n

j 6=i

x− xj
xi − xj

In an interpolation attack, one is interested in constructing polynomials
using inputs and outputs of the block cipher. The attack’s idea is that if
the constructed polynomials have a small degree, only few plaintexts and
the corresponding ciphertexts are necessary to solve for the key-dependent
coefficients of the polynomial. A probabilistic version of the interpolation
attack has been published later by Jakobsen [139, 143].

Courtois-Pieprzyk Attack

Under a purely algebraic approach, a first step is to express a given block
cipher in a system of equations; actually, every component of a block cipher
can be described with help of a set of algebraic equations. If one collects
these descriptions, one gets a large system which mathematically defines
the complete block cipher. If it is possible to solve this system faster than
an exhaustive key search, then the cipher may be considered to be broken.
Surprisingly, Ferguson, Schroeppel and Whiting [104] have managed to do
in the case of Rijndael. Actually, they express Rijndael as a single equation
made of 250 terms. Undoubtedly, such a huge equation is extremely difficult
to work with, but it is a nice proof-of-concept.

In a second step, Courtois and Pieprzyk [70] show that the S-boxes of
Rijndael and Serpent can be written as an overdefined system of algebraic
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equations on GF (2); this fact is due to the algebraic essence of the S-box (it
is based on the inverse operation in a finite field) in the case of Rijndael and
to the small size (4-bit) of the substitution boxes of Serpent. In their paper,
they claim that Serpent with 256-bit may be broken faster with exhaustive
search using their so-called XSL-attack. They exploit previous results of
Shamir and Kipnis [293] developed to attack public-key cryptosystems based
on multivariate quadratic equations; the key idea is to consider nonlinear
terms as independent linear variables and to solve the obtained system using
a Gaussian reduction. This process is named re-linearization and has been
extended later by Courtois et al. [68]. At the time of writing, the exact
complexity of these attacks is not known, and an accurate analysis remains
an open problem; however, it is worth noticing that such attacks are clearly
effective against stream ciphers [65, 66, 69].

Interestingly, Murphy and Robshaw [235] show that it is possible to
reduce the complexity of the system of equations describing Rijndael by
working on GF

(
28
)

instead of GF (2). At the time of writing attacks against
the 128-bit key version of Rijndael expressed as a multivariate quadratic
equations system over GF

(
28
)

are claimed to succeed within about 280 to
2100 operations, but this complexity is far to be accepted by the research
community.

2.3.6 Other Attacks

Slide Attacks

An interesting concept of attack is the slide attack and variations thereof
proposed by Biryukov and Wagner [37,38]. An important and unusual prop-
erty of this attack is that it is independent of the block cipher rounds num-
ber. It exploits the degree of self-similarity of the block cipher: for instance,
one can apply it against block ciphers having a periodic key schedule. Let
f = fr ◦ . . .◦ f1 be an r-round block cipher and let us denote xi the encrypted
value after i rounds (x0 denotes thus the plaintext and xr the ciphertext).
If the relation x1 = f1(x0, k

(1)) holds, where k(1) is the round subkey used
during the first round, then (x0, x1) is called a slid pair. An adversary gets
two relations x1 = f1(x0, k

(1)) and fr(xr, k
(r)) = xr+1 which involve only a

single round function, and which can potentially be solved for k(1) and k(r).

This attack can be applied to variants of DES, like the one proposed by
Brown and Seberry [52], the Even-Mansour scheme [101], or every Feistel
scheme with a 4-rounds periodic key-schedule, for instance. Furthermore, it
has been shown that certain auto-key ciphers (where the choice of the round
key is dependent of the data) are also vulnerable to this attack.
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Related Cipher Attack

Certain block ciphers allow a variable round number. Wu demonstrated
in [332] that block ciphers with such a property, whose key-schedule does
not depend on the total number of rounds, and which share the same round
functions may succumb to a related-cipher attack.

A related-cipher attack can be applied when the key is fixed, and when
the block cipher is used with different round numbers; it can recover the key
when the differences between the round numbers is small. More formally,
let fr be a block cipher made of r rounds and fr+1 the same block cipher
with one round more. Let us admit that an adversary is able to get the
decryption p = f−1

r (c) of a ciphertext c under a key k and the encryption
c′ = fr+1(p) of p under the same key by the same cipher with one more
round. Then, the adversary knows that f(c) = c′ under the key k. As a
single round function is insecure in most of block ciphers, there is a high
probability that the adversary is able to recover the round subkey. More
generally, the adversary may use this method to learn the remaining round
subkeys, and eventually the key, provided the key-schedule algorithm is not
one-way. This attack could still be applied against more than one round,
exploiting an elaborated attack against this reduced-round cipher.

2.4 Security Models

To precisely quantify the security of a block cipher, and thus prove that
it fulfills given security requirements, is an extremely difficult task with
nowadays knowledge (ultimately, one should not forget that up to now, very
little can be proved with respect to the practical security of block ciphers).
A first task consists in defining the precise security model in which one
would like to prove the security of a primitive. A rather intuitive definition
of the security of a block cipher is the K-security concept of Daemen and
Rijmen [81]; obviously, this definition is extremely difficult to work with in
a mathematical sense.

Definition 2.4.1 (K-Security). A block cipher is K-secure if all possi-
ble attack strategies for it have the same expected work factor and storage
requirements as for the majority of possible block ciphers with the same di-
mensions. This must be the case for all possible modes of access for the ad-
versary (known / chosen / adaptively chosen plaintext / ciphertext, known
/ chosen / adaptively chosen key relations, ...) and for any a priori key
distribution.

The NESSIE project [247] considered furthermore two additional informal
(but pragmatic) security models, namely practical security and historical
security : in the first model, which includes most of the cryptanalysis per-
formed nowadays, a block cipher is considered secure if the best-known at-
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tack requires too much resources by an acceptable margin. It is a very
practical model as one can test the block cipher with different known at-
tacks and assess a certain security level to it. However, it is not possible
to predict the security of the underlying block cipher with respect to yet
unknown attacks. The historical security of a block cipher is derived ac-
cording to the amount of cryptanalytic work on the ciphers performed over
the years. An old block cipher which resists to all cryptanalytical attacks
since a long time will inevitably inspire a larger security feeling than a new
block cipher which has not been extensively cryptanalysed.

In this section we present additionally different formal approaches de-
scribed so far in the academic literature; we consider Shannon’s perfect secu-
rity model, also named information-theoretical security, the security against
polynomially bounded adversary, and ad-hoc proofs of security.

2.4.1 Perfect Secrecy

In his seminal paper about cryptography, Shannon [295] introduced a model
of security known as perfect security or unconditional security. In this very
strong model, one assumes that the adversary is infinitely powerful, but
restricted to a ciphertext-only attack.

Let us model a block cipher as two statistically independent probability
distributions on the plaintext X and on the key Y , respectively. Then, a
cryptosystem f, where Y = fK(X) is said to have the property of perfect
secrecy if the two probability distributions, for all x and y, satisfy

Pr
X|Y

[X = x|Y = y] = Pr
X

[X = x]

Perfect security means that the a posteriori distribution of the plaintext X
after viewing the ciphertext Y is equal to the a priori distribution of the
plaintext, or in other words, the adversary learns nothing more about the
plaintext after having viewed the ciphertext than she knew before. Let us
recall Shannon’s notion of entropy [294].

Definition 2.4.2 (Entropy of a random variable). Let X be a discrete
random variable defined on a finite set X . The entropy of X is defined to
be the quantity

H(X) = −
∑

x∈X s.t.

Pr[X=x]6=0

Pr[X = x] log2 Pr[X = x]

One can express the concept of perfect secrecy with help of entropy.

Theorem 2.4.1 (Shannon [295]). Let X and Y be random variables dis-
tributed according to the probability distribution of the plaintext and the ci-
phertext, respectively. Perfect secrecy is equivalent to

H(X) = H(X|Y )
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A well-known example of perfectly secure cipher is the one-time pad, or
Vernam cipher [321]. Let us assume that the plaintext is a string x ∈ {0, 1}`
of ` bits. The key is defined to be an `-bit string drawn uniformly at random
from the set of all `-bit strings and statistically independent of the plaintext,
and the ciphertext is just the bitwise XOR operation between the plaintext
and the key. Then, provided the key is used to encrypt a single plaintext
(otherwise, the one-time-pad would suffer from a trivial known-plaintext
attack), the Vernam cipher is a perfect cipher. Unfortunately, the one-time-
pad suffers from two major drawbacks: the key is very large, and one cannot
reuse it. However, it is the price to have perfect secrecy, as stated by the
following theorem, due to Shannon [295].

Theorem 2.4.2. Let X and Y be random variables distributed according to
the probability distribution of the plaintext and the ciphertext, respectively.
Perfect secrecy implies

H(K) ≥ H(X)

In other words, in a perfect cipher, the key must be at least as large as the
plaintext.

2.4.2 Security against Bounded Adversaries

Mainly due to the fact that perfect secrecy is a too strong model of secu-
rity which leads to unpractical constructions, modern cryptography assumes
usually that the adversary’s power (like computational resources, memory
resources, or the number of queries to an oracle), are bounded.

Bounded-Storage Model

In the bounded-storage model, proposed by Maurer [207, 208], one assumes
that an adversary has an infinite computational power, but is limited in
terms of storage capacity. Known ciphers in the bounded-storage model
make largely use of a randomizer, i.e. a large amount of public randomness
which can be tampered by the adversary, but not stored completely.

Luby-Rackoff Model

The field of provable security for block ciphers has probably been initiated
by Luby and Rackoff in their seminal article [191] where they proved that
a three-round Feistel cipher (see Def. 2.2.1) involving statistically indepen-
dent pseudorandom functions results in a pseudorandom permutation. Since
then, many researchers have studied, improved and extended their results
(see [164, 192, 209, 213, 241, 260, 261, 263, 265, 271, 336]).

In the Luby-Rackoff security model, a distinguisher δν is a computa-
tionally (and memory) unbounded Turing machine which can play with an
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oracle Ω implementing a permutation. This permutation is, with probability
π0 = 1

2 the block cipher C under review (i.e. a random permutation defined
by a block cipher on {0, 1}m, where m is the block size and the randomness
comes from the choice of the key), or with probability π1 = 1

2 a permutation
C∗ chosen uniformly at random from the set of all permutations on {0, 1}m;
the latter is usually called the “perfect cipher”.

The distinguisher δν can submit a bounded number ν of queries to Ω and
ultimately outputs a decision bit “0” (if it guesses that C∗ was implemented
by Ω) or “1” (if it guesses that C was implemented by Ω); one is interested
in characterizing and computing its advantage

Advδν (C,C∗) =
∣∣∣Pr

C
[δν(x) = 1]− Pr

C∗
[δν(x) = 1]

∣∣∣

where x = (x1, . . . , xν) is the vector of the values queried to the oracle;
another important measure is the best advantage of any distinguisher:

BestAdvν(C,C∗) = max
δν

Advδν (C,C∗)

Here, the maximum is taken over the set of all possible (non-adaptive and
computationally unbounded) distinguishers between C and C∗. There is an
important difference between adaptive and non-adaptive distinguishers: an
adaptive distinguisher is allowed to wait for an answer before submitting the
next query, which may thus be a function of the previous answer. In this
model, a “security proof” means that one is able to provide an acceptable
upper-bound on BestAdvν(C,C∗) for a given block cipher C. As outlined
above, the current state of research is able to give security proofs only for
very few constructions, mainly for high-level schemes, like the Feistel cipher.

Vaudenay’s decorrelation theory (see [313, 314, 316–318, 320]) is a set
of mathematical tools which aims at studying and defining the security of
block ciphers in the Luby-Rackoff model. Basically, a central concept of
decorrelation theory is the so-called decorrelation matrix of order ν. Given
a function fK parametered by a random key K from a set A to a set B, its
decorrelation matrix of order ν is defined to be

[fK ]ν(x1,...,xν),(y1,...,yν) = Pr
K

[fK(x1) = y1 ∧ . . . ∧ fK(xν) = yν ]

where the probability is taken on the key K, and [fK ]ν(x1,...,xν),(y1,...,yν) is a
real matrix defined on Aν × Bν where the rows are numbered by input ν-
tuples and the columns are numbered by output ν-tuples. Given a norm ||.||
on the vector space of Aν × Bν-type real matrices, the ν-wise decorrelation
bias of f is defined by

Decν(fK) = || [fK ]ν(x1,...,xν),(y1,...,yν) − [f∗K ]ν(x1,...,xν),(y1,...,yν) ||

where [f∗K ]ν(x1,...,xν),(y1,...,yν) is the ν-wise decorrelation matrix of the canonical
ideal random function f∗K .
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The link to the best advantage of any adaptive distinguisher limited to ν
queries is the following: for a matrix M ∈ R

Aν×Bν
, one defines the following

norm:

||M ||a = max
x1

∑

y1

max
x2

∑

y2

· · ·max
xν

∑

yν

|M(x1,...,xν)(y1 ,...,yν)|

Then, one can show that

BestAdvν(fK , f
∗
K) =

1

2
·
∣∣∣
∣∣∣ [fK ]ν(x1,...,xν),(y1,...,yν) − [f∗K ]ν(x1,...,xν),(y1,...,yν)

∣∣∣
∣∣∣
a

As a constructive example of the application of decorrelation theory, one
can mention the Peanut construction (over which DFC is based) which is
basically an r-round Feistel scheme with decorrelation modules as a round
function. If these decorrelation modules achieve a ν-wise decorrelation bias
of ε, by using the multiplicative properties of the matrix norm and the
triangular inequality with a truly random 3-round Feistel construction, one
obtains from the Luby-Rackoff Theorem [191] that

Decν(fK) ≤
(
2ν22−

m
2 + ε

)b r
3c

where m is the block length in bits.

2.4.3 Ad-Hoc Proofs of Security

Theoretical notions of security towards practical attacks like differential
[31–33] and linear cryptanalysis [202, 203] have been defined quite early
by Nyberg [249] and by Chabaud and Vaudenay [58], respectively. This
approach leads to ad-hoc proofs where maximal (multi-path) linear and
differential probabilities are upper-bounded for a given construction (as
in [10, 155, 156, 251, 252, 257, 258], for instance). One of the first examples
of practical, real-world block cipher based on such ad-hoc proofs of security
with regards to linear and differential cryptanalysis is Misty1 [205].

However, one must remain fully aware of the fact that ad-hoc proofs of
security are not real proofs of security: they are merely heuristic arguments
that a given attack strategy can not apply on a certain block cipher, but
they do not imply that this block cipher possesses any security property
towards other (and maybe still unknown) kinds of attacks. For instance, the
prototype cipher PURE, which is a variant of a family proposed by Knudsen
and Nyberg [252] and shown to be secure against differential cryptanalysis
has been attacked using an interpolation attack [142]; another example is
the COCONUT98 block cipher proposed by Vaudenay [313] and immune to
linear and differential cryptanalysis: it succumbs to Wagner’s boomerang
attack [322] and to a linear-differential cryptanalysis [29].
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Furthermore, we have to note the difference which exists between “proofs
of security” and “arguments for the security” of a block cipher. For instance,
block cipher designers often compute upper bounds on the maximum differ-
ential probability of any differential characteristic and conclude that their
cipher is immune to differential cryptanalysis: it is not really a mathemat-
ical proof of resistance towards differential cryptanalysis, since it does not
take into account the cumulative aspect of differentials. However, it is still
a strong argument in favor of the immunity of that cipher towards differ-
ential attacks. And finally, we have to keep in mind that such “proofs of
security” often assume hypotheses which are not formally true in the reality:
for instance, one often assumes that, in an iterative block cipher, the round
subkeys are uniformly distributed and statistically independent; although
such an assumption is usually not likely to be true, because of the nature of
the key-schedule algorithm, it often captures that reality in an acceptable
way.



Chapter 3
Statistical Cryptanalysis of Block

Ciphers

Historically, statistical procedures have always been associated with crypt-
analytic attacks against block ciphers. In the “modern” era of cryptanalysis,
one of the first ever published attack exploiting statistical correlations in the
core of DES [242] is Davies and Murphy’s attack [83]. Biham and Shamir’s
differential cryptanalysis [31–33], Matsui’s attack against DES [202, 203],
Vaudenay’s statistical and χ2 cryptanalysis [312], Harpes and Massey’s par-
titioning cryptanalysis [126], Gilbert-Minier stochastic cryptanalysis [225],
and Wagner’s boomerang attack [322], as well as all the attacks derived
from those, are attacks using statistical procedures in their core (we refer
the reader to §2.3). To the best of our knowledge, Murphy et al. pro-
posed for the first time in an unpublished report [234] a general statistical
framework for the analysis of block ciphers using the technique of likelihood
estimation. Other examples can be found in the field of cryptology: re-
cently, Coppersmith, Halevi and Jutla [61] have devised a general statistical
framework for analysing stream ciphers; they used the concept of statistical
hypothesis testing for systematically distinguishing a stream cipher from a
random function. Other examples (this list being non-exhaustive) include
Maurer’s analysis of Simmon’s authentication theory [210,211] and Cachin’s
theoretical treatment of steganography [54, 55]. In a parallel way, some at-
tempts to formalize the resistance of block ciphers towards cryptanalytic
attacks have been proposed: for instance, Pornin [267] derived a general cri-
terion of resistance against the Davies and Murphy attack; for this purpose,
he made use of statistical hypothesis testing. Vaudenay, in a sequence of
papers (e.g. [313, 316, 320]) proposed the decorrelation theory as a generic
technique for estimating the strength of block ciphers against various kinds
of attacks. In these papers, he notably derived bounds on the best ad-
vantage of any linear and differential distinguishers, however without using

57
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statistical hypothesis testing concepts.
As pointed out by many authors, statistical hypothesis tests are con-

venient in the analysis of statistical problems, since, in certain cases, well-
known optimality results (like the Neyman-Pearson lemma, for instance)
can be applied. In this chapter, we consider the resistance of block ciphers
against linear and differential cryptanalysis, as a first step, and against gen-
eral iterated attacks as a second step, as a statistical hypothesis testing
problem. This allows us to derive several bounds on the best advantage of a
wide class of attacks and to state optimality results on the decision processes
involved during these attacks.

3.1 The Neyman-Pearson Paradigm

Statistical hypothesis testing is a formal way for distinguishing between
probability distributions on the basis of random variables generated from
one of these distributions; obviously, this is a frequently encountered situa-
tion in cryptanalysis. A useful and well-known statistical framework is the
Neyman-Pearson approach; it will build the mathematical foundations of
our considerations about deriving optimal attacks. In this framework, the
probability distributions are grouped into two aggregates, one of which is
called the null hypothesis, and is denoted by H0, and the other of which
is called the alternative hypothesis and is denoted by H1. For instance, H0

might state that the distribution of a random variable modeling the informa-
tion obtained during an attack was a normal law with mean µ0 and variance
σ, while the alternative hypothesis H1 might state that the random variable
was distributed according to a normal law with mean µ1 6= µ0 and the same
variance σ. When both hypotheses are completely determined, as it is the
case in this simple example, such hypotheses are called simple hypotheses.
When a hypothesis does not completely specify the probability distribution
under consideration, one calls it a composite hypothesis. We now describe
formally the Neyman-Pearson paradigm.

According to the Neyman-Pearson paradigm, a decision as to whether
or not reject the null hypothesis H0 in favor of H1 is made on the basis
of a statistic1 M(x), where x denotes the sample value taking values on a
set X . The sets of values of M for which H0 is accepted or rejected are
called the acceptance region, denoted A, and the rejection region, denoted
Ac, respectively. More formally,

A = {x : δ(M(x)) = 0} and Ac = {x : δ(M(x)) = 1}
1A statistic is a function on samples, such that any possible sample from a population

is paired with a value of the statistic. A statistic is in fact a random variable, and there is
a probability distribution that identifies for all its different possible values the probability
of each being measured. This distribution is called the sampling distribution to avoid
confusion with the distribution of values in the population.
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where δ : R → {0, 1} is a decision rule (or a test) mapping any value of
M(x) either to H0 or to H1. The decision rule δ might make two types of
error.

Definition 3.1.1 (Type I/II Error Probabilities). The probability that
a decision rule δ reject the null hypothesis H0 when it is actually true is
called type I error and is noted

α = Pr
X←D

[δ(M(X)) = 1|D ∈ H0] . (3.1)

The probability that a decision rule δ accept the null hypothesis H0 when it
is actually false is called type II error and is noted

β = Pr
X←D

[δ(M(X)) = 0|D ∈ H1] . (3.2)

IfH0 is simple, one calls α the significance level, or the size of the test; if it is
composite, α generally depends on which particular member ofH0 is true: in
this case, the significance level is defined to be the least upper bound of these
probabilities. Similarly, if H1 is composite, β depends on which particular
member of H1 holds as well. Finally, the probability that H0 is rejected
when it is false is called the power of the test; hence, the power equals
1−β. An ideal test would have α = β = 0, but this can be achieved only in
trivial cases [274]. In practice, it is furthermore always the case that, for a
fixed sample size, β must be increased in order to decrease the significance
level, and vice-versa. The Neyman-Pearson approach resolves this conflict
by imposing an asymmetry between the two hypotheses: the significance
level is fixed in advance and then an attempt is made to construct a test
yielding a small value for β.

3.1.1 Likelihood-Ratio Tests

In the simplest case of hypothesis testing, we have to decide between two
fully characterized distributions. Let X be a random variable with X ← D,
and let us consider two hypotheses: H0 = {D0} and H1 = {D1}, where D0

and D1 are known. Thus, we have to decide between D = D0 and D = D1.
The Neyman-Pearson lemma [248] derives the shape of the optimum test
between two probability distributions2.

Lemma 3.1.1 (Neyman-Pearson). Let X be a random variable distri-
buted according to X ← D on a finite set X and let the decision problem
corresponding to the hypotheses H0 = {D0} and H1 = {D1}. For τ ≥ 0, let
the acceptance region Aτ be defined by

Aτ =

{
x : Pr

D0

[X = x] ≥ τ · Pr
D1

[X = x]

}
. (3.3)

2We state the Neyman-Pearson lemma for discrete probability distributions, but the
same results hold for continuous distributions as well.
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Let α and β be the corresponding probabilities of error defined as in Eq. (3.1)
and Eq. (3.2), respectively. Let B be any other decision region with associated
probabilities of error α′ and β′. If α′ ≤ α, then β ′ ≥ β.

Proof. Let 1Aτ and 1B be the indicator functions of the decision regions Aτ
and B, respectively. Then, for all x ∈ X ,

(1Aτ (x)− 1B(x)) ·
(

Pr
X←D0

[X = x]− τ · Pr
X←D1

[X = x]

)
≥ 0

since it is always the product of two terms with the same sign. Let

πD0(x) = Pr
X←D0

[X = x] and πD1(x) = Pr
X←D1

[X = x].

Then, we sum over all x ∈ X and obtain

0 ≤
∑

x∈X
(1Aτ (x)− 1B(x)) · (πD0(x)− τ · πD1(x))

=
∑

x∈Aτ

(πD0(x)− τπD0(x))−
∑

x∈B
(πD0(x)− τπD0(x))

= (1− α)− τβ − (1− α′) + τβ′

= τ(β′ − β)− (α− α′).

The lemma follows from τ ≥ 0.

Let us now express Eq. (3.3) in an alternate way:

Mlr :

{
X −→ [0,+∞]

x 7→ PrX←D0
[X=x]

PrX←D1
[X=x]

(3.4)

with the convention3 that x
0 = +∞ for 0 < x < 1. Interpreted in terms of

Mlr, the Neyman-Pearson lemma indicates that the optimum test (regarding
error probabilities) in case of a binary decision problem is a test based on the
statistic which is called a likelihood-ratio, and that the test simply consists
in comparing the value of Mlr(x) to a fixed threshold τ . Practically, there
still exists the problem of choosing τ and the desirable type I or type II error
probabilities. Another possibility consists in following a Bayesian approach
and to assign prior probabilities π0 and π1 = 1−π0 to both hypotheses. If we
assume that correct decisions are not penalized and incorrect decisions are
penalized equally, which is a desired property in a completely symmetrical
approach, then one can show [71, page 314] that an optimal decision rule is
based on the statistic

Mblr :

{
X −→ [0,+∞]

x 7→ π0 PrX←D0
[X=x]

π1 PrX←D1
[X=x]

(3.5)

3Note that the case 0
0

must never occur when dealing with discrete probability spaces.
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and chooses H0 if and only if Mblr(x) ≥ 1. It is optimal in the sense that it
minimizes the overall error probability defined by

πe = π0α+ π1β.

3.1.2 Generalized Likelihood-Ratio Tests

As outlined in the previous paragraph, the test based on the likelihood ratio
Mlr is optimal for choosing between two simple hypotheses. It is actually
possible [274, page 308] to develop generalizations of this test for use in
situations in which the hypotheses are not simple. Such tests are not gen-
erally optimal, but they are typically not optimal in situations for which no
optimal test exists.

It is often the case that the hypotheses under consideration specify, or
partially specify, the values of parameters of the probability distribution
according to which the sample data are distributed. Let X = (X1, . . . , Xν)
be a random vector4 representing the sample data, and let fD(x, θ) be their
joint probability density function (which depends on a parameter θ). Then,
for instance, the null hypothesis H0 may specify that θ ∈ P0, where P0 ⊂
P is a subset of the set P of all possible values for θ, and the alternate
hypothesis may specify that θ ∈ P1, where P1 ⊂ P and P0 ∩P1 = ∅. Let us
furthermore define P ′ = P0 ∪ P1. Based on these data, a plausible measure
to compare both hypotheses may be the ratio of their likelihood. If the
hypotheses are composite, each likelihood ratio is evaluated at the value of
θ which maximizes it:

M′glr(x) =
maxθ∈P0 fD(x, θ)

maxθ∈P1 fD(x, θ)
(3.6)

Hence, small values of M′glr(.) tends to discredit the null hypothesis. Note
that it is preferable, for some technical reasons [274], to use the statistic

Mglr(x) =
maxθ∈P0 fD(x, θ)

maxθ∈P ′ fD(x, θ)
(3.7)

rather than the one defined in Eq. (3.6). Since Mglr = min{M′glr, 1}, small
values of M′glr correspond to small values of Mglr. In order for this likelihood-
ratio test to have a significance level equal to α, the threshold τ must be
chosen such that

Pr
X←D

[Mglr ≤ τ |D ∈ H0] = α.

Provided the sampling distribution of Mglr is known under the null hypoth-
esis, then it is sometimes possible to determine the corresponding threshold
τ , but this sampling distribution is generally not of a simple form; however,

4We refer the reader to the definition of a random variable (Def. A.1.3) and to the
generalization to random vectors described thereafter.
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in many situations, the following (informally stated) theorem [274] allows to
gain some insight to derive a valid approximation. The dimensions of P0 and
P ′ are the numbers of free parameters fully determining the distributions in
H0 and in H1.

Theorem 3.1.1. Under certain smoothness conditions on the involved prob-
ability density function, the null distribution of −2 log Mglr tends to a χ2

distribution with degrees of freedom equal to the dimension of P ′ minus the
dimension of P0 as the sample size tends to infinity.

An example of generalized likelihood-ratio test particularly useful in the
context of cryptanalytical attacks is the following: we would like to test the
goodness of fit of a model for a given multinomial probability distribution 5.
More formally, we would like to judge the plausibility of a multinomial distri-
bution (described by a vector p(θ) which possibly depends on a parameter6

θ) relatively to an alternative hypothesis H1 which contains all possible vec-
tors p′ under the sole constraint that their components sum up to 1. If the
vectors are m-valued, P ′ is thus the set consisting of m nonnegative numbers
whose sum is equal to 1. In this case, the numerator of Eq. (3.7) can be
written as

max
p∈P0

(
n!

x̂1! · · · x̂m!

)
p1(θ)

x̂1 · · · pm(θ)x̂m (3.8)

where the x̂i’s are the observed counts in the m components of the vector.
In case where Eq. (3.8) depends on θ, this equation has to be maximized
in terms of θ, leading to an “optimal” θ̄. We will denote the corresponding
probabilities by pi(θ̄). Since the probabilities are unrestricted under P ′,
one can show that the denominator of Eq. (3.7) is maximized by p̄i1 = x̂i

n .
Rewriting Eq. (3.7), we get

−2 log Mglr = 2
m∑

i=1

x̂i log

(
x̂i

npi(θ̄)

)

Under P ′, the cell probabilities are allowed to be free, with the constraint
that they sum to 1, so the dimension of P ′ is equal to m− 1. Provided that
the probabilities p(θ̄) depend on a k-dimensional parameter θ, the dimen-
sion of P0 is equal to k. Then, according to Theorem 3.1.1, the sampling
distribution of −2 log Mglr is thus a χ2 distribution with m− k − 1 degrees
of freedom.

Note furthermore that, with help of a Taylor series argument, it possible
to give an heuristic argument [274] indicating that, at order 2, Eq. (3.7) and

5We refer the reader to Def. A.2.3.
6In a cryptanalytical context, p(θ) will be most of the time the uniform distribution,

and thus, do not even depend on θ.
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Pearson’s χ̂2 statistic

χ̂2 =
m∑

i=1

(
x̂i − npi(θ̄)

)2

npi(θ̄)
(3.9)

are asymptotically equivalent under H0.

3.2 Linear Cryptanalysis of DES Revisited

In this section, we describe in detail, discuss and improve several aspects of
Matsui’s linear cryptanalysis, which is a generic technique invented to attack
block ciphers; some basic aspects were already covered in §2.3.3. First,
we recall some historical aspects as well as required preliminaries about
linear cryptanalysis in §3.2.2; then we present a statistical modelization of
its success probability and we show how to fully exploit the information
gathered during a linear cryptanalysis by deriving generic and optimal key
ranking procedures. Second, we describe and discuss in §3.2.5 experimental
results about the real complexity of a linear cryptanalysis when applied to
DES.

3.2.1 Historical Perspectives

Ideas inducing to linear cryptanalysis can be traced back to an early obser-
vation of Shamir7 [292] presented during the conference Crypto’85; in this
short paper, Shamir demonstrates that there is a clear statistical correlation
between the XOR of all the output bits of DES’s S-boxes and the second
input bits; he was however not able to exploit these correlations. He ob-
serves furthermore that DES’s S-box S5 is the most biased one according to
this criterion. Later, Tardy-Corfdir and Gilbert8 [308] presented a known-
plaintext attack of statistical nature against 4-rounds and 6-rounds FEAL.
This attack is based on the fact that one can approximate the addition mod-
ulo 256 using a linear approximation involving the XOR of some well-chosen
input and output bits, i.e. a Boolean equation being probabilistically true.
According to [308], the principles of the attack can be described as follows:

“[...]Our attack is a statistical variant of the well-known meet-
in-the-middle method. It is based on two kinds of relations :

7According to [292], correlations between the XOR of the output bits and the second
input bit were independently observed by Franklin in his M.Sc. thesis submitted two
months before Crypto’85.

8Actually, the nomenclature “Matsui’s linear cryptanalysis” seems to be an instance
of Stigler’s law of eponymy, stating that “no law, theorem, or discovery is named after its

originator”, as Tardy-Corfdir-Gilbert [308] attack against FEAL is nothing but a linear
cryptanalysis. Note that Stigler is a statistician who did not discover the eponymy law!
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1. It uses some key-independent statistics which involve the
plaintext and intermediate block of the FEAL data random-
izer (say the block x(n−1) which appears as an input to the
last round of the Feistel scheme).

2. In addition, the deciphering algorithm provides a key-de-
pendent relation between this intermediate block and the ci-
phertext.

An exhaustive search for the value optimizing the agreement be-
tween the a-priori expected statistics (1) and the statistics de-
duced from the ciphertext (2) provides the part of the expanded
key involved in (2).”

Matsui and Yamagishi [206] presented then at Eurocrypt’92 a variant of
Tardy-Corfdir and Gilbert’s attack using exact linear expressions, i.e. equa-
tions holding with probability one, to attack the same cipher, but with
much less necessary known plaintext-ciphertext pairs. The technique has
been considerably extended and refined by Matsui [202] in an attack against
DES. Finally, key-ranking procedures have been introduced by Matsui [203],
as well as a report on the first9 successful experimental attack against DES.

3.2.2 Basic Attack

In this part, we describe thoroughly the versions published in [202, 203]
of both attacks of Matsui against DES [242]. As outlined in §2.3.3, linear
cryptanalysis exploits the imbalance of linear approximations. Such a prob-
abilistic equation involves the sum (where the addition is the one of GF (2),
namely the XOR operation) of some input bits, of some output bits, and
of some key bits. For the sake of convenience, the selection of the involved
input, output, and key bits, which are seen as vectors over GF (2), is often
expressed in terms of the inner dot-product of bit masks with the input,
output, and key variables, respectively. As the inner dot-product is usually
defined for vectors over R

n or C
n (and not for vectors over finite fields), we

give here a formal definition thereof. Note that in this thesis, when using
the inner dot-product operation, we will always assume that the underlying
field has a characteristic equal to 2.

Definition 3.2.1 (Inner Dot-Product over GF(2n)m). Let the finite
field of characteristic 2 with 2n elements be denoted by GF(2n) = (F ,+,×).
Let x and y be m-valued vectors over Fm. Then, the inner dot-product of
x and y, denoted x · y is defined by

x · y =
m∑

i=1

xiyi

9To be more precise, it is at least the first publicly reported attack.
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where xi denotes the i-th component of x.

Note that the addition in a field of characteristic 2 is frequently denoted ⊕
and we will adopt this convention in the following. Let us now denote by x,
y, and k the vectors over GF (2) representing the plaintext, the ciphertext,
and the key, respectively. Then, a linear relation can be written, with help
of Def. 3.2.1, as

a · x ⊕ b · y = c · k (3.10)

with y = fk(x) for a block cipher f(.). Another convenient way to write
Eq. (3.10) frequently encountered in the literature is

x{i1,...,ia} ⊕ y{j1,...,jb} = k{k1,...,kc}

where z{l1,...,ld} means “sum of the bits of z numbered l1, . . . , ld”:

z{l1 ,...,ld} =

d⊕

i=1

zli

As the substitution boxes of DES are the sole non-linear components in
the entire cipher, we obviously need to study their non-linearity to begin a
linear cryptanalysis. Matsui introduced in [202] the concept of local S-box
approximation for this purpose.

Definition 3.2.2 (Local S-box approximation). Let S be an S-box de-
fined as S : {0, 1}t1 → {0, 1}t2 ; let a ∈ {0, 1}t1 and b ∈ {0, 1}t2 be fixed bit
masks. Then, the local approximation of S for the masks a and b is the
number defined by

NSS(a,b) = #
{
x ∈ GF (2)t1 : a · x = b · S(x)

}
(3.11)

Clearly, there exists an effective linear statistical correlation as soon as
NSS(a,b) 6= 2t1 for some a and b 6= 0. In the case of DES, it is possi-
ble to compute the NSSi(a,b) for all S-boxes Si and all the possible masks a
and b, since the S-boxes have a relatively small size. The most biased S-box
of DES is S5 for the masks a = 0x10 and b = 0xF:

NSS5(0x10, 0xF) = 12

One would expect a value of 32 in an unbiased S-box. Note that the masks
exactly correspond to the above mentioned observation by Shamir [292].
Using the definition of DES’s round function (see §2.2.1), one can write a
biased linear approximation of a round function f (i) of DES derived from the
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local approximation of S5 as follows10:

x
(i)
{16} ⊕ f

(i)
{2,7,13,24}(x

(i)) = k
(i)
{9} (3.12)

where k(i) is the subkey used in round i. Hence, this linear relation holds
with probability 12

64 . To extend Eq. (3.12) to a round, one needs the following
simple results, which show how behave masks in the case of a XOR and a
“branching” operation.

Lemma 3.2.1. Let a,b ∈ {0, 1}t be two bit masks. Let f : {0, 1}t×{0, 1}t →
{0, 1}t defined by f(x,y) = x⊕ y and g : {0, 1}t → {0, 1}t × {0, 1}t defined
by g(x) = x||x. Then the following equalities hold:

a · x⊕ a · y = a · f(x,y)

a · x = (b||a⊕ b) · g(x) = (a⊕ b||b) · g(x)

The above lemma allows us to rewrite Eq. (3.12) for the i-th round of DES.

x
(i)
l{2,7,13,24} ⊕ x

(i)
r{16} ⊕ x

(i+1)
r{2,7,13,24} = k

(i)
{9} (3.13)

where xl and xr denote the left and right 32-bit halves in the Feistel scheme,
respectively. The linear relation Eq. (3.13) holds also with probability 12

64 .
The next natural step consists in extending the linear relation Eq. (3.13) to
multiple rounds: for this purpose, one can concatenate single-round relations
if the output bit mask of a given relation is the same as the input bit mask
of the following relation in order to construct a linear characteristic (see
Def. 2.3.11). Under the assumption that the input values are statistically
independent, one can use Matsui’s piling-up lemma [202] to compute the
bias of the resulting linear approximation.

Lemma 3.2.2 (Piling-up lemma). Let X1, . . . , Xν be n statistically in-
dependent Boolean random variables with Pr[Xi = 0] = 1

2 + εi. Then

Pr

[
n⊕

i=1

Xi = 0

]
=

1

2
+ 2n−1

n∏

i=1

εi (3.14)

A particularly fruitful approach to find linear characteristic consists in find-
ing an iterative linear characteristic, i.e. a characteristic having the same
input and output masks; such linear approximations are useful because we
can apply them on any number of rounds. Since the sole components of

10We have purposely chosen not to follow Matsui’s and FIPS’ bit notations to be con-
sistent with the notations used throughout this thesis. Matsui [202, 203] denotes the bit
indices from right to left and begins with the index 0, while the standard describing
DES [242] numbers the bit from left to right and begins with the index 1. We use a C-like
notation, which means that we number the bits from the left to right, and we begin with
the index 0.
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DES which are non-linear are the S-boxes, one wishes to minimize the num-
ber of active S-boxes in the linear relation, i.e. S-boxes which have a non-zero
output bit mask. Indeed, using an algorithm based on a branch-and-bound
technique described in [204], Matsui exhibited [202] the best (i.e. the most
biased) r-rounds linear characteristics for 3 ≤ r ≤ 20; in [204], Matsui
proved that these characteristics are actually the best ones and he showed
that such characteristics have at most one active S-box per round. Further-
more, an interesting fact is that for certain number of rounds, there exists
two best linear characteristics having a kind of palindromic shape due to the
symmetry of the DES skeleton. The following four linear approximations are
the best ones on 14 and 15 rounds of DES.

Theorem 3.2.1 (Best Linear Approximations on 14-Rounds DES).
The best linear approximations on 14-rounds DES are

xr{7,13,24} ⊕ yl{2,7,13,24} ⊕ yr{16} =

k
(2)
{25} ⊕ k

(3)
{3} ⊕ k

(4)
{25} ⊕ k

(6)
{25} ⊕ k

(7)
{3} ⊕ k

(8)
{25} ⊕ k

(10)
{25} ⊕ k

(11)
{3} ⊕ k

(12)
{25} ⊕ k

(14)
{25}

and

xl{2,7,13,24} ⊕ xr{16} ⊕ yr{7,13,24} =

k
(2)
{25} ⊕ k

(4)
{25} ⊕ k

(5)
{3} ⊕ k

(6)
{25} ⊕ k

(8)
{25} ⊕ k

(9)
{3} ⊕ k

(10)
{25} ⊕ k

(12)
{25} ⊕ k

(13)
{3} ⊕ k

(14)
{25}

where k
(i)
{B} denote the set B of the ith-round subkey. The above two linear

approximations hold with probability 1
2 − 1.19 · 2−21.

Theorem 3.2.2 (Best Linear Approximations on 15-Rounds DES).
The best linear approximations on 15-rounds DES are

xl{7,13,24} ⊕ xr{15,19} ⊕ yl{2,7,13,24} ⊕ yr{16} =

k
(1)
{24,28} ⊕ k

(3)
{25} ⊕ k

(4)
{3} ⊕ k

(5)
{25} ⊕ k

(7)
{25} ⊕ k

(8)
{3} ⊕ k

(9)
{25} ⊕ k

(11)
{25}⊕

k
(12)
{3} ⊕ k

(13)
{25} ⊕ k

(15)
{25}

and

xl{2,7,13,24} ⊕ xr{16} ⊕ yl{7,13,24} ⊕ yr{15,19} =

k
(1)
{25} ⊕ k

(3)
{25} ⊕ k

(4)
{3} ⊕ k

(5)
{25} ⊕ k

(7)
{25} ⊕ k

(8)
{3} ⊕ k

(9)
{25} ⊕ k

(11)
{25}⊕

k
(12)
{3} ⊕ k

(13)
{25} ⊕ k

(15)
{24,28}

where k
(i)
{B} denote the set B of the i-th round subkey. The above two linear

approximations hold with probability 1
2 − 1.19 · 2−22.
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1: Input: an oracle Ω, a data complexity ν, a, b, c, ε.
2: Output: a guess about c · k
3: Initialize a counter m̂ to 0.
4: for i← 1 to i = ν do
5: Generate a plaintext xi uniformly at random and independently of

the other queries. Submit xi to Ω and get yi = fk(xi).
6: if a · xi ⊕ b · yi = 0 then
7: Increment m̂.
8: end if
9: end for

10: if ε > 0 then
11: if m̂ > ν

2 then
12: Output “c · k = 0”.
13: else
14: Output “c · k = 1”.
15: end if
16: else
17: if m̂ > ν

2 then
18: Output “c · k = 1”.
19: else
20: Output “c · k = 0”.
21: end if
22: end if

Algorithm 3.1: Matsui’s First Algorithm [202]

Information Extraction about the Key

Let us assume that we make use of a biased linear approximation on a block
cipher f for a fixed key k:

a · x⊕ b · fk(x) = c · k (3.15)

with

Pr
X

[a ·X ⊕ b · fk(X) = c · k] =
1

2
+ ε (3.16)

Let us furthermore assume that we make use of a random source generating
some (x, fk(x)) pairs. Equivalently, we can assume that we make use of
an oracle Ω implementing fk(.) which is queried by a uniformly distributed
random plaintext source (i.e. it is a known-plaintext attack). It is then
possible to extract one bit of information about the key using Matsui’s First
Algorithm [202] described in Alg. 3.1. This bit c · k of information about
the key could be used for instance to speed up an exhaustive key search.
A major drawback of Alg. 3.1 is the small amount of extracted information
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1: Input: an oracle Ω, a data complexity ν, a, b, c, ε.
2: Output: a guess about c · k and k(r)

3: Initialize 2`r′ counters m̂i with 1 ≤ i ≤ 2`r′ to 0.
4: For each candidate k̂

(r)
i with 1 ≤ i ≤ 2`r′ , let m̂i be the number of uni-

formly and statistically independent plaintext-ciphertext pairs queried
to Ω for which the left side of Eq. (3.17) is equal to 0.

5: Let m̂max ← maxi m̂i and m̂min ← mini m̂i

6: if |m̂max − ν
2 | > |m̂min − ν

2 | then
7: Output the key candidate corresponding to m̂max and c · k = 0 (if

ε > 0) or c · k = 1 (if ε < 0).
8: else
9: Output the key candidate corresponding to m̂min and c · k = 1 (if

ε > 0) or c · k = 0 (if ε < 0).
10: end if

Algorithm 3.2: Matsui’s Second Algorithm [202]

about the key. A possible improvement11 is the following: let us assume
that we make use of a linear relation on r− 1 rounds of a block cipher. The
idea consists in guessing a subset of the `r key bits used as the last round
subkey and to partially decrypt the known plaintext-ciphertext pairs with
these key guesses. Under this scenario, one can rewrite Eq. (3.15) as

a · x⊕ b ·
(
f(r)

−1
(c, k̂(r))

)
= c · k (3.17)

where f(r)
−1

(c, k̂(r)) denotes the inverse of the last round function fed with
a subkey candidate k̂(r). Let us assume that `r′ key bits are necessary to
recover the effective output bits of the linear relation on r − 1 rounds. We
have then 2`r′ − 1 wrong subkey candidates and a single correct one. Intu-
itively, if we decrypt the last round with the right subkey candidate, we will
evaluate the linear approximation properly, and this approximation should
be biased as expected. If we decrypt with a wrong subkey candidate, we can
see this operation as equivalent to encrypt the ciphertext with a supplemen-
tary round, and the linear approximation bias should be rendered far more
uniform. This idea is formally expressed as Alg. 3.2 which is named Matsui’s
Second Algorithm. Once the cryptanalyst has a guess for the effective bits of
the last round subkey, the other key bits can be recovered using an exhaus-
tive key search. A further improvement which generalize Alg. 3.2, named
key ranking, was introduced by Matsui in his second paper [203]. Instead
of taking the most biased subkey candidate as the right one, and then to

11The idea of “peel off” one or more rounds originate from Biham and Shamir differential
cryptanalysis [31]; Matsui [202] seems to be the first one to use the idea in a different
context; however, the key idea is implicitly present in the paper of Tardy-Corfdir and
Gilbert [308].
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1: Input: an oracle Ω, a data complexity ν, a, b, c, ε.
2: Output: a guess about c · k and k(r)

3: Initialize 2`r′ counters m̂i with 1 ≤ i ≤ 2`r′ to 0.
4: For each candidate k̂

(r)
i with 1 ≤ i ≤ 2`r′ , let m̂i be the number of uni-

formly and statistically independent plaintext-ciphertext pairs queried
to Ω for which the left side of Eq. (3.17) is equal to 0.

5: Rank the m̂i by decreasing value of |m̂i− ν
2 | and rename k̂

(r)
i and m̂i by

k̃
(r)
i and m̃i, i.e. such that |m̃1 − ν

2 | > |m̃2 − ν
2 | > · · · > |m̃2`

r′ − ν
2 |.

6: for i← 1 to 2`r′ do
7: Fix the key bits defined by k̃

(r)
i and look exhaustively for the remaining

key bits. Check the key candidates with a few plaintext-ciphertext
pairs.

8: if the right key is found then
9: Break and output “Right key found”

10: end if
11: end for

Algorithm 3.3: Matsui’s Third Algorithm [203]

search exhaustively for the remaining unknown key bits, Matsui proposed to
rank the subkey candidates from the most likely to the least likely, and, in
this order, to search exhaustively for the remaining unknown key bits until
the right key is found. We name this algorithm Matsui’s Third Algorithm
and it is formally described in Alg. 3.3.

3.2.3 Analysis of Matsui’s Attacks

In this part, we analyze the success probability and discuss the optimality
of the three versions of Matsui’s attack as described earlier.

Statistical Analysis of Matsui’s First Algorithm

The success probability of Alg. 3.1 has been approximated by Matsui [202];
we give here a more precise analysis and we derive tight bounds.

Theorem 3.2.3 (Success Probability of Alg. 3.1). Let ν be the number
of given known plaintext-ciphertext pairs; let ε be the bias of Eq. (3.15).
Then, the success probability of Alg. 3.1 satisfies

Pr[“Alg. 3.1 is successful”] ≈
∫ 2

√
ν|ε|√

(1−4ε2)

−∞
φ(t)dt (3.18)

and
lim
ν→∞

Pr[“Alg. 3.1 is successful”] = 1.
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Proof. Let us assume without lost of generality that ε > 0, that c · k = 0
(the other three cases are symmetric situations), and that ν is odd. Let us
denote by M̂ a discrete random variable modeling the value of the counter

m̂. Then the success probability of Alg. 3.1 is Pr
[
M̂ > ν

2

]
, thus it satisfies

Pr[“Alg. 3.1 is successful”] =

ν∑

i=d ν
2 e

(
ν

i

)(
1

2
+ ε

)i(1

2
− ε
)ν−i

. (3.19)

Since ε is small, one can approximate the above probability using the central-
limit theorem (see Th. A.2.1) and noting that M̂ follows approximately a
normal distribution with parameters

µ = ν

(
1

2
+ ε

)
and σ =

√
ν

(
1

4
− ε2

)
.

Hence,

Pr[“Alg. 3.1 is successful”] ≈ Φ


−

2
(
ν
2 −

ν(1+2ε)
2

)

√
ν (1− 4ε2)




= Φ

(
2
√
ν|ε|√

(1− 4ε2)

)

which concludes the proof.

We note that the above theorem gives an extremely good approximation of
the success probability of Alg. 3.1 for any “practical” value of ν and ε in
the context of a cryptanalysis and reduce to Matsui’s result given in [202]
for small ε:

Pr[“Alg. 3.1 is successful”] ≈ Φ
(
2
√
ν|ε|
)

For estimating the tightness of Eq. (3.18), we need to derive non-asymptotic
lower and upper bounds on the probability function of a binomial law; we
will use the following approximation (see [262]):

k∑

i=0

(
n

i

)
pi(1− p)n−i ≈ Φ(z)− (1− 2p)(z2 − 1)φ(z)

6
√
np(1− p)

(3.20)

where

z =
k + 1

2 − np√
np(1− p)

(3.21)

and k = 0, . . . , n. We can bound the maximum absolute error of this ap-
proximation using the following result, due to Raff [270].
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Theorem 3.2.4 (Raff). Let ηmax(n, p) be the maximum absolute error
when the cumulative distribution function of a binomial law with parameters
n and p is approximated by Eq. (3.20) and Eq. (3.21). Then,

ηmax(n, p) ≤
0.056√
np(1− p)

(3.22)

The following bounds are then a straightforward application of Eq. (3.20),
Eq. (3.21) and of Th. 3.2.4 to our scenario.

Theorem 3.2.5. Let ν be the (even) number of given known plaintext-
ciphertext pairs; let ε be the bias of Eq. (3.15). Then, the success probability
of Alg. 3.1 satisfies

∣∣∣∣∣∣
Pr[“Alg. 3.1 is succ.”]− Φ

(
ε
√
ν

σ

)
−
ε(νε2 − σ2)φ

(
ε
√
ν

σ

)

6σ3
√
ν

∣∣∣∣∣∣
≤ 0.056

σ
√
ν

(3.23)

where σ =
√

1
4 − ε2.

Proof. Without loss of generality, we assume that ε > 0. According to
Eq. (3.19), we have

Pr[“Alg. 3.1 is successful”] =

ν∑

i= ν
2
−1

(
ν

i

)(
1

2
+ ε

)i(1

2
− ε
)ν−i

= 1−
ν
2∑

i=0

(
ν

i

)(
1

2
+ ε

)i(1

2
− ε
)ν−i

We substitute k = ν
2 and p = 1

2 + ε into Eq. (3.20), we note that Φ(−z) =

1− Φ(z) and that φ(−z) = φ(z), we write σ =
√

1
4 − ε2, and this results in

Pr[“Alg. 3.1 is successful”] ≈ Φ

(
ε
√
ν

σ

)
+
ε(νε2 − σ2)φ

(
ε
√
ν

σ

)

6σ3
√
ν

. (3.24)

The theorem follows from the straightforward application of Raff’s bounds
given in Th. 3.2.4 to Eq. (3.24).

Fig. 3.1 plots the success probability of Alg. 3.1 in terms of c = νε2.
Interestingly, we can note that Th. 3.2.3 implicitly assumes that the ab-
solute bias |ε| is independent of the key value k actually implemented by Ω.
This implicit assumption was recognized early by Nyberg [250] and named
fixed-key equivalence hypothesis by Harpes et al. [125].
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Figure 3.1: Success probability of Alg. 3.1

Assumption 3.2.1 (Fixed-Key Equivalence Hypothesis). The abso-
lute bias |ε| of a linear expression as defined in Eq. (3.15) and Eq. (3.16) is
independent of the key value k.

In other words, the above assumption states that a linear expression ap-
proximates the cipher in the same way for all key values, i.e. that |ε| is not
key-dependent; this assumption holds well in the case of DES, but not in
the case of RC5 and RC6 [46,290,291], for instance, because of the presence
of strong key-dependent components in the definition of these ciphers.

Let us now consider the statistical decision process on which Alg. 3.1 is
built. For this, we construct an optimal statistical test to decide whether
c · k = 0 or c · k = 1 using the Neyman-Pearson approach described in §3.1.
We assume that we make use of a linear approximation

a · x⊕ b · fk(x) = c · k

with

Pr
X

[a ·X ⊕ b · fk(X) = c · k] =
1

2
+ ε with ε 6= 0

and that ε > 0 (the case ε < 0 leads to similar considerations). We assign
to the null hypothesis H0 the probability distribution D0

D0 :

{
Pr[a ·X ⊕ b · fk(X) = 0] = 1

2 + ε
Pr[a ·X ⊕ b · fk(X) = 1] = 1

2 − ε
and to the alternative hypothesis H1 the probability distribution D1

D1 :

{
Pr[a ·X ⊕ b · fk(X) = 0] = 1

2 − ε
Pr[a ·X ⊕ b · fk(X) = 1] = 1

2 + ε
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Note that H0 is equivalent to c ·k = 0 and that H0 is equivalent to c ·k = 1,
since we know the sign of ε. As a second step, we build the likelihood-ratio
corresponding to this decision problem. Let us denote by Êi the event

Êi = 1a·Xi⊕b·fk(Xi)=0

for the i-th query Xi to the oracle Ω. We have then

Mlr(Ê1, . . . , Êν) =

ν∏

i=1

(
1
2 + ε

)Êi
(

1
2 − ε

)1−Êi

(
1
2 − ε

)Êi
(

1
2 + ε

)1−Êi

=

(
1
2 + ε

)m̂ (1
2 − ε

)ν−m̂
(

1
2 − ε

)m̂ (1
2 + ε

)ν−m̂

=

(
1
2 + ε

)2m̂ (1
2 − ε

)ν
(

1
2 − ε

)2m̂ (1
2 + ε

)ν

where m̂ =
∑

i Êi. By taking the logarithm of Mlr(Ê1, . . . , Êν), one can
rewrite the above expression as

log
(
Mlr(Ê1, . . . , Êν)

)
= (ν − 2m̂)

(
log

(
1

2
− ε
)
− log

(
1

2
+ ε

))

︸ ︷︷ ︸
<0

(3.25)

Comparing Mlr(Ê1, . . . , Êν) to 1 is thus equivalent to comparing m̂ to ν
2 ,

which is the decision rule of line 11 in Alg. 3.1. Hence, we proved the
following theorem.

Theorem 3.2.6. For a fixed number ν of data queried to the oracle Ω,
Matsui’s First Algorithm (Alg. 3.1) is optimal in the sense that it maximizes
the success probability over all algorithms based on the sample bit

a ·Xi ⊕ b · fk(Xi).

We can interpret the above results as follows: based on the statistical infor-
mation gathered by Matsui’s First Algorithm, and on the a priori knowledge
about the sign of ε, one cannot define a decision rule on samples of c·k which
performs better than Eq. (3.25); note that we take into account infinitely
powerful adversaries as well.

Success Probability of Matsui’s Second and Third Algorithms

As explained in page 69, one expects that during a key-ranking procedure,
the right key will have a different behavior than all the other wrong keys.
This intuition is summarized in the following assumption, named hypothesis
of wrong-key randomization12 by Harpes et al. [125].

12Interestingly, one can note that this assumption is (implicitly) stated in terms of a
likelihood-ratio.
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Assumption 3.2.2 (Wrong-Key Randomization Hypothesis). For
any linear relation Λ similar to 3.17 for which its bias is large for virtually
all values k(1), . . . ,k(r−1) of the round subkeys, the following is true: for
virtually all possible round subkeys k(1), . . . ,k(r−1), for all possible guesses
K(r) of the last round subkey,

∣∣∣Pr
[
Λ holds |K(r) = k̂

(r)
r

]
− 1

2

∣∣∣
∣∣∣Pr

[
Λ holds |K(r) = k̂

(r)
w

]
− 1

2

∣∣∣
� 1

where k̂
(r)
w denotes a wrong guess and k̂

(r)
r denotes the right guess.

We give now a new modelization of the success probability of Matsui’s Sec-
ond and Third Algorithms. For this, we will first need the definition of the
incomplete beta function of order (a, b).

Definition 3.2.3 (Incomplete Beta Function). The incomplete beta
function of order (a, b) is defined by

Ba,b(x) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1 dt (3.26)

where Γ(x) denotes the gamma function13.

As a first step, let us consider the following scenario: let M1,M2, . . . ,Mn

be n independent and identically distributed continuous random variables
having fM and FM as density and distribution functions, respectively. We
sort the values of M1,M2, . . . ,Mn in strictly14 increasing order and denote
them by M̃1 < M̃2 < . . . < M̃n. The distribution function FM̃i

of the i-th

smallest random variable M̃i is given by the following lemma whose proof
can be found in [273, page 205].

Lemma 3.2.3. The distribution function of the i-th smallest among n iid
random variables is

FM̃i
(x) = Bi,n−i+1 (FM (x))

where Ba,b(x) is the incomplete beta function of order (a, b).

By using the previous result and the independence between the involved
random variables, we prove now the following theorem.

Theorem 3.2.7. Let M1, . . . ,Mn be n iid random variables having fM and
and FM as probability density and distribution functions, respectively. Let
M∗ be a random variable statistically independent of the Mi. Let R denote
a random variable modeling the rank of M ∗ when the n+1 random variables

13The gamma function is related to the factorial by Γ(n) = (n − 1)!.
14The probability that equal values occur is 0.
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{Mi : 1 ≤ i ≤ n} ∪ {M ∗} are sorted in non-increasing order. For r ∈ N, 1 ≤
r ≤ n, the distribution function of R is equal to

Pr [R ≤ r] =

∫ +∞

−∞
Bn+1−r,r(FM (x))fM∗(x)dx

and

E [R] = 1 + n

(
1−

∫ +∞

−∞
FM (x)fM∗(x)dx

)

where Ba,b(x) is the incomplete beta function of order (a, b).

Proof. Let us denote the n+ 1 sorted random variables by

M̃1 > · · · > M̃i > M∗ > M̃i+1 > · · · > M̃n

We can compute the distribution function FR(x) of R as follows:

Pr [R ≤ r] = Pr
[
M̃r < M∗

]

=

+∞∫

−∞

y∫

−∞

fM̃r
(x)fM∗(y) dx dy

=

∫ +∞

−∞
Bn+1−r,r (FM (y)) fM∗(y) dy

where the last equality follows from Lem. 3.2.3. By definition of the expec-
tation of a random variable, we have

E [R] =

n+1∑

r=1

r · Pr [R = r]

= Pr [R = 1] +

n+1∑

r=2

r (Pr [R ≤ r]− Pr [R ≤ r − 1])

= n+ 1−
n∑

r=1

Pr [R ≤ r]

where

n∑

r=1

Pr [R ≤ r] =

n∑

r=1

∫ +∞

−∞
Bn+1−r,r (FM (y)) fM∗(y) dy

=

∫ +∞

−∞
fM∗(y)

n∑

r=1

Bn+1−r,r (FM (y)) dy
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It is easy to see that

n∑

r=1

Bn+1−r,r (FM (y)) = n

∫ FM (y)

0

n−1∑

i=0

(
n− 1

i

)
ti(1− t)n−1−i dt

= n

∫ FM (y)

0
dt = nFM(y)

and we can thus conclude with

E [R] = n+ 1−
∫ +∞

−∞
fM∗(y)

n∑

r=1

Bn+1−r,r (FM(y)) dy

= n+ 1− n
∫ +∞

−∞
fM∗(y)FM (y) dy

= 1 + n

(
1−

∫ +∞

−∞
fM∗(y)FM (y) dy

)

which proves the theorem.

We compute now the probability distributions of the random variables M̂i

modeling the counters m̂i used in Alg. 3.2 and Alg. 3.3. For this purpose, we
denote by M̂i, with 1 ≤ i ≤ 2`r′ − 1, the (ordered) counters corresponding
to wrong subkey candidates, and by M̂∗ the counter corresponding to the
right subkey candidate. We first take an assumption which is essentially of
heuristic nature.

Assumption 3.2.3. The 2`r′ random variables M̂i, with 1 ≤ i ≤ 2`r′ − 1,
and M̂∗ are statistically independent.

The two following assumptions are motivated, on the one hand, by the accu-
racy of the approximation by a normal distribution of a binomial distribution

D
(n,p)
Bin when n is large and p ≈ 1

2 , and on the other hand, by both Ass. 3.2.1
and Ass. 3.2.2.

Assumption 3.2.4. The random variables 2M̂i−ν√
ν

, with 1 ≤ i ≤ 2`r′ − 1 are

distributed according to the normal distribution Dφ.

Assumption 3.2.5. The random variable 2M̂∗−ν(1−2ε)√
ν

is distributed accord-

ing to the normal distribution Dφ.

We note that Matsui’s Third Algorithm considers the absolute deviation
from the counters to ν

2 (see line 5 of Alg. 3.3). To take this fact into account,

as well as the three above assumptions, we define B̂ to be a random variable



— 78 —

distributed according to the probability distribution of the absolute bias of
a counter corresponding to a wrong subkey candidate

B̂ =

∣∣∣∣∣
M̂i

ν
− 1

2

∣∣∣∣∣

as well as

B̂∗ =

∣∣∣∣∣
M̂∗

ν
− 1

2

∣∣∣∣∣ .

where B̂∗ is a random variable distributed according to the probability dis-
tribution of the absolute bias of a counter corresponding to the right subkey
candidate. Note that the probability distribution of Y = |X − a|, provided
X is normally distributed and a is a real constant, is often called the folded
normal distribution. The computation of the probability distribution of B̂
and B̂∗ can be easily derived using the following lemma.

Lemma 3.2.4. Let X be a continuous random variable distributed accord-
ing to a normal distribution with parameters µ and σ; let a ∈ R be a real
constant. The probability density function of Y = |X − a|, with a ≤ µ, is

fY (y) = φ

(
y − µ+ a

σ

)
+ φ

(
a− y − µ

σ

)

for 0 ≤ y ≤ +∞ and fY = 0 otherwise.

Proof. The cumulative distribution function of the random variable Y can
be computed as

FY (y) = Pr
Y

[Y ≤ y] = Pr
X

[|X − a| ≤ y]
= Pr

X
[−y + a ≤ X ≤ y + a]

= Φ

(
y − µ+ a

σ

)
− Φ

(
a− y − µ

σ

)

As the cumulative distribution function of the normal distribution is abso-
lutely continuous, which ensures that it has a probability density function
with respect to Lebesgue measure, one can write

fY (y) =
∂
(
Φ
(y+a−µ

σ

)
− Φ

(a−y−µ
σ

))

∂y

= φ

(
y + a− µ

σ

)
+ φ

(
a− y − µ

σ

)

which concludes the proof.
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Under Ass. 3.2.3, Ass. 3.2.4, Ass. 3.2.5, using Lem. 3.2.4, and assuming that
the linear approximation is unbalanced in case of a wrong key candidate (in
the spirit of Ass. 3.2.2), we can compute the probability density function of
B̂ and B̂∗ for the case of a linear cryptanalysis applying Matsui’s Second
and Third Algorithms as follows: B̂∗ is distributed according to a folded
normal law with15 a = 1

2 , µ∗ = 1
2 + ε, and σ2 = 1

4ν

fB̂∗(x) = φ
(
2(x− ε)√ν

)
+ φ

(
2(x+ ε)

√
ν
)

(3.27)

while B̂ is distributed according to a folded normal law with a = 1
2 , µ = 1

2 ,
and σ2 = 1

4ν

fB̂(x) = 2φ
(
2x
√
ν
)
. (3.28)

We get thus the following result, which is a straightforward application of
Th. 3.2.7 in this setting.

Corollary 3.2.1. Under assumptions 3.2.2, 3.2.3, 3.2.4, and 3.2.5, the
probability distribution of the rank R of the right subkey candidate when
using Alg. 3.3 is equal to

Pr [R ≤ r] =

∫ +∞

−∞
Bn+1−r,r(FB̂(x))fB̂∗(x)dx

and

E [R] = 1 + n

(
1−

∫ +∞

−∞
fB̂∗(x)FB̂(x)dx

)

where Ba,b(x) is the incomplete beta function of order (a, b), n = 2`r′ − 1,
fB̂∗ and fB̂ are respectively defined in Eq. (3.27) and Eq. (3.28), and FB̂∗
and FB̂ are their respective cumulative distribution functions.

It is worth noticing that our results stated in Cor. 3.2.1 have been reworked
by Selçuk and Bıçak [289] in a manner allowing a simpler numerical evalua-
tion. Their result was derived with help of the following classical application
of the central limit theorem (a proof thereof can be found in [273, page 490]).

Theorem 3.2.8. Let W1, . . . ,Wn be n independent and identically dis-
tributed random variable with an absolutely continuous distribution function
FW (x). Suppose that the probability density function fW (x) is continuous
and positive on the interval [a, b[. If 0 < FW (a) < q < FW (b) < 1, and if
k(n) is a sequence of integers such that

lim
n→+∞

√
n
∣∣∣k(n)

n
− q
∣∣∣ = 0

15Note that we do not need to know the sign of ε anymore when working with a folded
normal distribution.
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and if W̃i denotes the i-th order statistic of the sample W1, . . . ,Wn, then
W̃k(n) is in the limit normally distributed:

lim
n→+∞

Pr

[
W̃k(n) − µ

σ
<

x√
n

]
= Φ(x)

where

µ = F−1
W (q) and σ =

1

fW (µ)

√
µ(1− µ)

Taking k(n) = bqnc + 1, this theorem states that the empirical sample
quantile of order q of n elements is for sufficiently large n approximately
normally distributed with mean µq = F−1

W (q) and standard deviation σq =

1
fW (µq)

√
q(1−q)
n . Selçuk and Bıçak obtained the following theorem holding

under the same assumptions than those stated in Cor. 3.2.1.

Theorem 3.2.9 (Selçuk and Bıçak [289]). Let ν be the number of given
known plaintext-ciphertext pairs; let us assume that Matsui’s Second Algo-
rithm Alg. 3.2 furnishes 2`r′ subkey candidates; let finally ε be the bias of
Eq. (3.15). Then, the success probability of Alg. 3.2 is approximately equal
to

Pr [R ≤ r] = Φ
(
2
√
ν|ε| − Φ−1

(
1− r

2`r′+1

))
.

Fig. 3.2 expresses the success probability of Matsui’s Second Algorithm
in terms of the number of known plaintext-ciphertext pairs at disposal of
an adversary in the context of a linear cryptanalysis of 16-round DES using
a single best approximation on 14- and 15-rounds, respectively, as stated in
Th. 3.2.1 and Th. 3.2.2. An interesting phenomenon occurs here: on the
one hand, the best approximation on 15-rounds is less biased than the one
on 14 rounds, but since the latter involves 12 unknown key bits, while the
15-rounds approximation involves only 6 bits, the success probability is on
the other hand essentially better for the approximation on 15 rounds, as
there is less noise from the wrong subkey candidates. However, note that
the exhaustive search of the remaining unknown key bits is 26 times more
costly.

Fig. 3.3 plots the cumulative distribution function of the rank r of the
right subkey candidate in the same context, using Matsui’s Third Algorithm
and a single best approximation on 14-rounds for various amounts ν of
known plaintext-ciphertext at disposal of the adversary.

3.2.4 Improvement of Matsui’s Attack

Matsui has introduced [202, 203] the idea of taking a “soft decision” about
the value of the right subkey by ranking subkey candidates by “maximum
likelihood”. We would like now to look more closely at this concept.
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Figure 3.2: Success probability of Matsui’s Second Algorithm (Alg. 3.2).
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1. Counting Phase: Collect several random samples sj = f2(pj, cj), for
j = 1, . . . , ν and count all occurrences of all the possible values of the
sj ’s in |S| counters denoted m̂i with 1 ≤ i ≤ |S|.

2. Analysis Phase: For each of the subkey candidates ki, 1 ≤ i ≤ 2`r′ ,
count all the occurrences in all xi = f3(ki, sj) and give it a mark µki

using the statistic Σ(x1, . . . , xν).

3. Sorting Phase: Sort all the candidates ki using their mark µki
. This

list of sorted candidates is denoted U .

4. Searching Phase: Exhaustively try all keys following the sorted list
of all the subkey candidates.

Figure 3.4: Structure of a statistical cryptanalysis

Optimal Key-Ranking Procedure

First of all, we define what we mean by an “optimal key ranking procedure”.
As our considerations apply to any attack of statistical nature, we first recall
the model of statistical cryptanalysis we will adopt. Let P, C and K be the
plaintext, ciphertext and key space, respectively. A statistical cryptanalysis
uses three functions, denoted f1, f2 and f3 which have the following role:

• f1 : K → K′ is a function which extract the useful information of the
key for the cryptanalysis. We assume here that |K′| = 2`r′ .

• f2 : P ×C → S, where S is called the sample space, extracts the useful
information about the plaintext and ciphertext spaces for the attack.

• f3 : K′×S → Q, where Q is a space summarizing information depend-
ing on intermediate results in the encryption.

In order to be efficient, a statistical cryptanalysis should fulfill the following
conditions: the information x = f3(k

′, s), where k′ ∈ K′, s ∈ S and x ∈ Q,
should be computable with a small piece of information on (p, c) ∈ P × C
and k ∈ K (namely, s and k′); furthermore, the information x = f3(s, k

′
r)

should be statistically distinguishable from x′ = f3(s, k
′
w), where k′r and k′w

is the information given by the right key and a wrong key, respectively. The
main idea of the attack consists in assuming that we can distinguish the
right key from wrong key with help of a statistical measurement Σ on the
observed distribution of the xi’s. The attack is summarized in Fig. 3.4. The
data complexity is then defined to be the number n of known plaintext-
ciphertext pairs needed in step 1, while the computational complexity is
usually16 the number of operations in the last phase of the attack.

16The complexity of steps 2 and 3 is usually negligible, but it may not be the case in
all situations.
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The key ranking procedure corresponds to step 3 in Fig. 3.4: instead of
returning the subkey k′max possessing the highest mark µk′max

= maxi µk′i out
of |K′| subkey candidates, the idea is to return a sorted list U containing key
candidates ranked by likelihood and to search exhaustively for the remaining
un-attacked bits in this order. Obviously, two central points in a statistical
cryptanalysis are the definition of the statistic Σ and of the mark µ which
has to be assigned to a subkey candidate. The first issue is the very essence
of the attack: the cryptanalyst must find a “statistical weakness” in the
cipher. In this part, we will be interested in the second issue, namely how
to define an optimal key-ranking procedure, which is formally defined in
Def. 3.2.4.

Definition 3.2.4 (Optimal Key Ranking Procedure). Let a set of
(sub-)key candidates be denoted K′ = {k1, . . . , k2`

r′ } and let R∗ be a random
variable which denotes the right one. Let S be a set of random measure-
ments. An optimal key-ranking procedure is a function which maps S to a
permutation ξ on {1, . . . , 2`r′} such that

2`
r′∑

i=1

iPr[k′ξ(i) = R∗] (3.29)

is minimal.

In other words, an optimal key ranking procedure orders the subkey can-
didates in such a manner that the cost of finding the distinguished subkey
(i.e. the right one) is minimal; here, we assume implicitly here that the cost
of testing a candidate for “distinguishness” is the same for every candidate.
The following simple lemma claims that an optimal key ranking procedure
in the spirit of Def. 3.2.4 must order the (sub-)key candidates by decreasing
probabilities of finding the distinguished candidate.

Lemma 3.2.5. Let K′ = {k′i : 1 ≤ i ≤ 2`r′} be a set of (sub-)key candidates
proposed by an attack, where one of the subkeys is a distinguished one, de-
noted by R∗. A permutation ξ on {1, . . . , 2`r′} which orders the (sub-)key
candidates such that

Pr
[
R∗ = k̃1

]
≥ . . . ≥ Pr

[
R∗ = k̃

2`
r′

]
(3.30)

where k̃ξ(j) = k′j is an optimal key ranking procedure.

Proof. Let us assume that there exists a permutation ξ not satisfying the
condition stated in Eq. (3.30) which minimizes Eq. (3.29). Let us denote

πi = Pr
[
R∗ = k̃i

]
the probability that the right subkey is at rank i. Without
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loss of generality, we assume that ξ implies that πi < πj for some i < j.
Then, by assumption, we must have

∑

u:u/∈{i,j}
u · πu + i · πi + j · πj ≤

∑

u:u/∈{i,j}
u · πu + i · πj + j · πi

which is equivalent to

i · πi + j · πj ≤ i · πj + j · πi ⇐⇒ i(πi − πj) ≤ j(πi − πj)

As πi− πj ≤ 0 by assumption, the above equation implies that i ≥ j, which
is a contradiction, and the theorem follows by induction.

Application to DES

Let us now apply optimal key-ranking procedure to the context of a lin-
ear cryptanalysis implemented as Matsui’s Third Algorithm (Alg. 3.3), the
probabilistic scenario is the one described in Th. 3.2.7 under Ass. 3.2.2,
Ass. 3.2.3, Ass. 3.2.4, and Ass. 3.2.5: we have 2`r′ − 1 iid random variables
M1, . . . ,Mn sharing fM and FM as probability density and distribution func-
tions, respectively, which model the value of the absolute bias of the counters
corresponding to wrong subkey candidates. Additionally, there is a random
variable M ∗ distributed according fM∗ , statistically independent of the Mi’s,
which models the value of the absolute bias of the counter corresponding to
the right subkey candidate. Let us assume that a subkey candidate is bound
to each counter such that we can use the counters to denote the subkey can-
didates. Let us sort now sort the sample values m̂i by decreasing value of
| m̂i

ν − 1
2 |, where ν is the number of samples, and rename them m̃i, i.e.

m̃1 ≥ m̃2 ≥ . . . ≥ m̃2`
r′ . (3.31)

Let us now consider the two following hypotheses (out of the 2`r′ possible
ones) for the rank of the right subkey candidate in the sorted sequence given
in Eq. (3.31): either the right subkey candidate has rank ψ, or rank ψ ′, with
1 ≤ ψ,ψ′ ≤ 2`r′ and ψ 6= ψ′. Then, the condition expressed in Th. 3.2.5 can
be rewritten as

fM∗(m̃ψ)
∏

1≤i≤2`
r′

i6=ψ

fM (m̃i) ≥ fM∗(m̃ψ′)
∏

1≤i≤2`
r′

i6=ψ′

fM(m̃i) (3.32)

which is, after some algebraic manipulations, equivalent to

fM∗(m̃ψ)

fM (m̃ψ)
≥ fM∗(m̃ψ′)

fM (m̃ψ′)
.
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This immediately drives us to rank the candidates by decreasing likelihood-
ratio values: the greater the value, the more likely it is to be the looked-
for candidate. We call this ranking procedure Neyman-Pearson ranking
procedure.

Definition 3.2.5 (Neyman-Pearson Ranking Procedure). To each
candidate k′, assign the mark

µk′ =
fM∗(Σk′)

fM (Σk′)
(3.33)

where Σk′ is the statistic produced by the candidate k ′, and fM∗ and fM are
the density functions of Σk′ in case of the right and a wrong key, respectively.
Then, sort the candidates by decreasing values of µk′.

The following result is then a straightforward consequence of Th. 3.2.5
and of Eq. (3.32).

Theorem 3.2.10. Neyman-Pearson key-ranking procedures are optimal (in
the sense of Def. 3.2.4).

Multiple lists (note that these considerations are valid for more than two
lists, too) giving information on disjoint subsets of the key bits can thus be
optimally combined easily if the joint distribution of the underlying statistics
is available. Usually, reasonable heuristic statistical independence assump-
tions can be taken.

We prove now that, in case of a linear cryptanalysis, Matsui’s ranking
procedure is equivalent to a Neyman-Pearson ranking procedure. Without
loss of generality, we will consider a linear approximation having a bias equal
to ε > 0; furthermore, we recall that ν denotes the number of samples at
disposal. Approximations of the Σ distributions were derived in §3.2.3; for
the sake of clarity, we recall them:

fM (x) =

√
8

νπ
e−

2x2

ν , for x ≥ 0 (3.34)

and

fM∗(x) =

√
2

νπ

(
e−

2(x−νε)2

ν + e−
2(x+νε)2

ν

)
for x ≥ 0 (3.35)

The likelihood-ratio is then given by a straightforward calculation.

Lemma 3.2.6. In the case of a linear cryptanalysis, the likelihood-ratio is
given by

µk′ = e−2νε2 · cosh(4εΣk′), Σk′ ≥ 0 (3.36)

where Σk′ is defined according to

Σk′ =
∣∣∣m̂k′

ν
− 1

2

∣∣∣.
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We can now state the following result for single-list ranking.

Theorem 3.2.11. Matsui’s single-list ranking procedure (following Alg. 3.3)
is equivalent to a Neyman-Pearson ranking procedure and is therefore opti-
mal in terms of the number of key tests.

Matsui’s refined attack against DES published in [203] actually makes use
of two linear approximations involving disjoint subsets of key bits; one is
the best linear approximations on 14 rounds of DES and is used for deriving
the second one using a “reversing trick”. Each of them gives information
about 13 key bits, the remaining 30 unknown key bits having to be searched
exhaustively. In order to combine the information coming from these two
sources, Matsui computes two independent ranking and generate the final
ranking by considering subkey candidates sorted according to the product
of their ranks in the two primitive lists of candidates. We can easily observe
that Matsui’s double-list ranking procedure, as described, although very
simple, is not a Neyman-Pearson key-ranking procedure (it is actually not a
total ordering) and it does not make use of the whole information given by
each subkey candidate (i.e. it does not use the experimental bias associated
with each candidate, but only their respective ranks). The first observation
leads to some ambiguity in the implementation of this double-list ranking:
should the combination of two candidates having respective ranks equal to 1
and 4 be searched for the unknown key bits before or after the combination
consisting of two candidates having both rank 2? We now illustrate the use of
a Neyman-Pearson ranking procedure in the case of a linear cryptanalysis of
DES. We have to compute the joint probability distribution of the statistics
Σk′1

and Σk′2
furnished by the two linear approximations. As these statistics

are dependant of disjoint subsets of the key bits, one can reasonably take
the following assumption.

Assumption 3.2.6. For each k′1 and k′2, Σk′1
and Σk′2

are statistically in-
dependent, where k′1 and k′2 denote subkey candidates involving disjoint key
subsets.

A second assumption neglects the effects of semi-wrong keys, i.e. keys which
behave as the right one according to a list only. This is motivated by the
fact that, in case of a linear cryptanalysis of DES, the number of such keys is
small, and thus their effect on the joint probability distribution is negligible.

Assumption 3.2.7. For each k′1 and k′2, Σ = (Σk′1
,Σk′2

) is distributed

according either to DM∗ = D
(1)
M∗ ×D

(2)
M∗ or to DM = D

(1)
M ×D

(2)
M , where D

(1)
M∗

and D
(2)
M∗ are the distributions of the right subkey for both key subsets, and

D
(1)
M and D

(2)
M are the distributions of a right subkey for both key subsets,

respectively.



— 87 —

Using these two assumptions, the probability density functions defined in
Eq. (3.34) and Eq. (3.35), and the fact that the bias of both linear expression
is the same and equal to ε, one can derive the likelihood-ratio:

µ(k′1,k
′
2)

= e−4νε2 · cosh(4εΣk′1
) · cosh(4εΣk′2

) (3.37)

As Eq. (3.37) is not “numerically” convenient to use, we may approximate
it using a Taylor development in terms of ε, which gives a very intuitive
definition of the Neyman-Pearson ranking procedure:

µ(k′1,k
′
2)
≈ 1 + (8Σ2

k′1
+ 8Σ2

k′2
− 4ν)ε2 +O(ε4) (3.38)

Hence, we can note that it is sufficient to rank the subkey candidates by
decreasing values of Σ2

k′1
+ Σ2

k′2
, i.e. the final mark is just the Euclidean

distance between an unbiased result and a given sample.
We may generalize this result to the case where the biases, which we

denote ε1 and ε2, are different in both equations; in this case, the likelihood-
ratio is given by

µ(k′1,k
′
2)

= e−2ν(ε12+ε22) cosh(4ε1Σk′1
) cosh(4ε2Σk′2

) (3.39)

A first order approximation is then given by

µ(k′1,k
′
2)
≈ 1 + 8Σ2

k′1
ε21 + 8Σ2

k′2
ε22 − 2ν(ε21 + ε22) (3.40)

which is equivalent to put a grade equal to µ(k′1,k
′
2)

= Σ2
k′1
ε21 + Σ2

k′2
ε22. We

summarize these facts in the following theorem.

Theorem 3.2.12. Under assumptions 3.2.6 and 3.2.7, in a linear crypt-
analysis using t approximations on disjoint key bits subsets having each a
bias equal to εi, 1 ≤ i ≤ t, a procedure which ranks the subkey candidates by
decreasing

µ(k′1,...,k
′
t)

=
t∑

i=1

(
Σk′i

εi

)2
(3.41)

is a Neyman-Pearson ranking procedure, and furthermore, it is optimal.

We have implemented Neyman-Pearson key-ranking procedures in the case
of DES, and we report some experimental results in §3.2.5, page 94. Finally,
we note that several published attacks (to the best of our knowledge, all are
derived from Matsui’s paper) use key ranking procedures or suggest them
as potential improvement. In [297], Shimoyama and Kaneko use quadratic
Boolean approximations of DES’ S-boxes possessing a larger bias. The first
part of their attack consists in a traditional linear cryptanalysis, and thus
we can apply our optimal ranking procedure; furthermore, another part of
their attack consists also in a sorting procedure using Matsui’s heuristic.
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In [166], Knudsen and Mathiassen show how to modify Matsui’s attack
into a chosen-plaintexts attack in order to reduce the needs of pairs. Their
attack can also use the ”reversing trick”, i.e. one can apply the same linear
characteristic on both encryption and decryption function, in order to derive
twice as much key bits. A new time, one could use a key-ranking procedure
and our optimal rule to define the order of the subkey candidates during the
exhaustive search part.

3.2.5 Implementation of Matsui’s Attack

The linear cryptanalysis attack as described in [203] (and in Alg. 3.3), except
the exhaustive search part17, has been implemented. The computational
most intensive part of the attack is obviously the encryption of 243 plaintexts.
For this, we have written in pure assembly code a DES encryption routine
designed for the Intel Pentium III microprocessor, which we now describe.

Bitslice Implementation of DES

One of the main problems arising during an implementation of DES in the
classical way is to deal effectively with the bit permutations. One has to
consider each bit in a CPU register separately; this is clearly an ineffective
way to employ the CPU’s power. It is possible to use lookup tables and
streamlined operations, but these techniques are memory intensive and the
data quickly do not fit anymore in the CPU memory cache.

The bitslice technique was first proposed in the cryptography field by
Biham [21], although it seems to be an implementation trick well-known in
the hardware field. The idea behind bitslice is quite simple: one allocates
one register for each bit of data, instead of storing all the bits in an unique
register. This allows to process in parallel a number of bits which is equal
to the size of the available registers.

If we consider DES (as defined in §2.2.1), we note that it mainly consists
of permutations and substitutions. When assigning a register to a single
bit, the permutations are dealt with at compile time, as it is actually an
addressing issue. In other words, it is not necessary to isolate a given bit,
which is a costly operation, because we have the bit ready in a register, or
in a memory location which is hard-coded in the program.

The only remaining problem concerns the S-boxes. Instead of using
lookup tables, one has to express this non-linear stage in DES as their gate
circuit, i.e. as a Boolean expression. Fortunately, as there is no loop in an
S-box, one does not have to deal with conditional behavior. The evaluation

17After having determined the final rank r of the right subkey candidate, we have
computed the expected complexity (in DES evaluations) of the exhaustive search part as
(r − 1) · 230 + 229.
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of these Boolean expressions will typically be more expensive than lookup-
tables, but the cost is amortized by the fact that we can evaluate 32 or 64
bits in parallel, provided the register size at disposal is 32- or 64-bit wide,
respectively.

As outlined before, the main advantages [268] of a bitsliced implemen-
tation are, on the one hand, that the bit permutations cost nothing at
execution time, and on the other had, that the CPU’s logical unit is used
at full rate. Obviously, one can list several disadvantages [268] as well: the
data are usually not available nor usable when they are spread over a bunch
of registers, which implies some conversion stage (this problem is known as
orthogonalization problem). Second, table lookups are not possible anymore
and have to be replaced by some logical computation which may be rather
painful to calculate and slow to execute. Even finding the optimal Boolean
evaluation of a given S-box is not a trivial task. Third, the resulting code is
large and it is possible to loose some speed if the CPU’s instruction cache is
not large enough. Fourth, in order to get some benefit from this technique,
many registers are needed, as memory is slow. And, last but not least, this
technique is very painful when implemented by hand. Although the num-
ber of disadvantages seems larger that the number of benefits, Biham [21]
was able to gain a speed factor equal to 3 on a 64-bit Alpha architecture
compared to the best classical implementations of DES.

Optimizations for the Intel Pentium MMX Architecture Intel’s
MMX architecture has been designed with the goal to improve multimedia
and intensive floating-point arithmetic applications. It achieves this goal by
offering a new set of 8 dedicated 64-bit registers, a new instruction set which
allows to process data in a parallel way, and a super-scalar architecture. In
our bitsliced implementation of DES, we have only used 5 MMX logical
operations, namely MOVQ, PXOR, PAND, PANDN, and POR. Unfortunately, there
are no other available logical operations, as it is sometimes the case on
certain RISC architectures. Another drawback is the lack of NOT operation.

Taking account of the temporal property of a linear cryptanalysis, we
have made a heavy use of the new cache management instructions of the
Intel Pentium III: the PREFETCH instruction is able to retrieve a minimum of
32 bytes of data prior to the data actually needed. This hides the latency for
data access in the time required to process data already resident in the cache.
This instruction does not change the user-visible semantics of a program,
but it may affect considerably the performances of a program when used
on purpose. Finally, our code has been fully unrolled, to avoid any latency
resulting from branch mispredications.

Kwan’s Boolean Representation of S-Boxes In his paper [21], Biham,
describes a Boolean representation of the DES S-boxes with an average count
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S-box S1 S2 S3 S4 S5 S6 S7 S8

Gate count 63 56 57 42 62 57 57 54

Clock cycles 283 271 276 262 279 272 275 269

Figure 3.5: Gate Count of Kwan’s Representation

of 100 gates (see Fig. 3.5). These results where later improved by Kwan [176]
down to an average gate count equal to 51; our fast DES implementation
was hence implemented with Kwan’s representation.

Performance Results The number of clock cycles on an Intel Pentium
III spent18 by our bitslice implementation is given in Fig. 3.5 for each S-
box. The whole DES routine needs 14893 clock cycles to encrypt 64 blocks
of data (i.e. 4096 bits), which represents an amortized cost of 232.7 clock
cycles per block. On a CPU clocked at 666 MHz, this results in a throughput
equal to 183 Mbps. One can hardly compare this number with existing fast
implementations of DES, because of optimizations specifically related to the
linear cryptanalysis; however, using classical available implementations for
our purposes would have resulted in significantly poorer performances.

Pseudo-Random Generator

We have used a linear feedback shift register (LFSR), as suggested by Matsui
[203], to generate the known plaintext-ciphertext pairs. Let ξ be a root of
an primitive polynomial p(x) of degree n over GF (2). Then, a LFSR can
be seen as the iteration of the mapping

i 7→ i× ξ

where the multiplications is done in the representation of the finite field
GF (2n) defined by p(x). Matsui [203] reports to have worked with such a
strategy in GF

(
264
)

to generate the known plaintext-ciphertext pairs, since
LFSRs are known to have very good statistical properties and that they
generate maximum-length sequences. We furthermore observe that one can
implement 64 LFSRs in parallel in a bitslice manner provided 64-bit registers
are available.

We found desirable to split the attack on several processors with a fine
granularity, mainly for ease of process management reasons. In order to
achieve this goal, we have split the 243 work load in 2048 partial jobs, each
handling 64 sequences at a time in parallel. Taking into account the effects
of the birthday scenario in this precise situation, it is quite insightful to
estimate the probability of generating overlapping sequences with a LFSR.

18Using the measurement procedure described in [9].
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Lemma 3.2.7. Let x ∈ GF(2n) with x 6= 0 be the seed value of a sequence
of length 2` generated by a maximal-period LFSR. Let

α =

⌊
2n − 1

3 · 2` − 2

⌋
.

Let m < α be the number of generated sequences in parallel. Then, the
probability πoverlap of generating two overlapping sequences is upper bounded
by

πoverlap ≤ 1−
(

1− m− 1

α

)m−1

Proof. We consider a sequence somewhere in th cycle of length 2n − 1. Let
us reserve space of length 2` − 1 at the left and a the right of a given
subsequence. Then, we divide the space in α non-overlapping subsequences
of 3 ·2`−2 elements, and a birthday paradox reasoning is finally applied.

Using Lem. 3.2.7, we observe that GF
(
264
)

is too small to avoid overlapping
sequences, so we chose to work in GF

(
2128

)
represented by the primitive

polynomial x128 + x7 + x2 + x+ 1.

Experimental Results

We have performed the attack 21 times, using the idle time of 8 to 16
CPUs; this represents between 3 and 6 days for a single run, depending on
the availability of the computers. An exhaustive table of our experimental
results regarding the complexity of the key exhaustive search part of the
attack is available in Fig. 3.6. This table gives the experimental complexity
for various amounts ν of plaintext-ciphertext pairs, where a figure x means
2x DES evaluations.

It is widely accepted that linear cryptanalysis of DES, given 243 known
plaintext-ciphertext pairs, has a success probability of 85% within a com-
plexity of 243 DES encryptions, which are values given by Matsui in [203]
(they are based on extrapolations from experiments on 8-rounds DES). Our
experimental results lead to the following observations:

• Given 243 known plaintext-ciphertext pairs, our experiments have a
complexity of less than 241 DES evaluation with a success probability
of 86 % where more than the half of the cases have a complexity
less than 239. Furthermore, if an attacker is ready to decrease her
success probability, the complexity drops dramatically (less than 234

DES evaluations with a success probability of 10 %).

• Given 242.5 known plaintext-ciphertext pairs (i.e. with 30 % less pairs),
half of the experiments have a complexity less than 242 DES evalua-
tions.
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Exp ν = 243 ν = 242.5 ν = 242 ν = 241 ν = 240

1 39.1836 38.4818 45.0307 51.3802 51.0533

2 33.2479 41.6346 43.6383 48.0928 43.1913

3 38.6055 41.8023 43.9622 48.5492 51.6012

4 38.1267 34.6147 41.3351 48.7240 51.2041

5 37.4878 29.0000 36.5157 46.1991 52.3685

6 34.0444 44.2753 46.6834 48.5221 50.1937

7 36.4676 45.5732 44.2949 47.3010 51.2913

8 36.1189 44.7722 41.4091 51.6338 52.1143

9 40.3515 47.0565 48.6184 52.1953 53.1000

10 41.6540 41.8682 45.7429 47.9120 41.9750

11 45.4059 51.2973 51.9932 51.8155 52.1972

12 36.1189 43.6633 46.7256 50.3949 49.2317

13 36.4009 36.1189 43.2183 47.0756 46.7680

14 39.0042 42.6736 44.3057 44.7116 47.3256

15 37.6330 39.8572 47.6536 49.5244 52.6439

16 38.9204 36.6653 41.5447 49.1082 49.9939

17 33.5236 38.8502 43.3128 46.1030 48.6798

18 39.8478 47.4938 52.3671 50.6770 50.3675

19 32.1699 31.8074 40.5093 43.8552 48.4968

20 40.7503 38.3729 40.3734 45.2436 52.3101

21 41.8721 44.9063 45.4147 52.0730 52.8571

Figure 3.6: Experimental Results about Linear Cryptanalysis of DES.
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ν 243 242.5 242 241 240

r ≤ 5 20 (22) 13 (13.5) 7 (7.6) 0 (2.3) 0 (0.8)

r ≤ 10 27 (25.8) 16 (17.1) 9 (10.5) 2 (3.6) 0 (1.3)

r ≤ 50 33 (33.6) 26 (26.2) 18 (18.8) 5 (8.6) 2 (3.9)

r ≤ 150 38 (37.7) 34 (32.3) 24 (25.7) 10 (14.3) 5 (7.7)

r ≤ 300 42 (39.4) 39 (35.7) 31 (30.3) 17 (19.2) 14 (11.6)

r ≤ 600 42 (40.8) 40 (38.5) 35 (34.6) 25 (24.7) 22 (16.8)

E[R] 38 (71) 129 (182) 302 (362) 654 (847) 1121 (1312)

Figure 3.7: Comparison between experimental and theoretical results.

• With only 240 pairs at disposal, the complexity is still far lower than
an exhaustive search.

Even if we have to take these experimental results carefully because of the
relative small number of statistical samples, they suggest strongly a lower
complexity than expected by Matsui in [203] and we risk the following con-
jecture:

Conjecture 3.2.1. Given 243 known plaintext-ciphertext pairs, it is possible
to recover a DES key using Matsui’s Third Algorithm (Alg. 3.3) within a
complexity of 241 DES evaluations with a success probability of 85 %.

These experimental results give us the possibility to test the accuracy
of Cor. 3.2.1 as well. Each of the 21 experiments provides two statistical
samples of the rank R of the right subkey candidate. Fig. 3.7 table summa-
rizes our results about the ranks of the right subkey candidates for various
amounts ν of known plaintext-ciphertext pairs and compare them to the
theoretical expectations (values in smaller characters) given by Cor. 3.2.1.
We observe that Cor. 3.2.1 seems to give a pessimistic expected value for
the rank. However, we have noticed that Cor. 3.2.1 is very sensitive numer-
ically. For instance, the expected rank E[R] is equal to 113 and to 39 when
we assume that ε = 1.1 · 2−21 and εr = 1.3 · 2−21, respectively.

Finally, a key parameter regarding the linear cryptanalysis success is of
course the bias of the involved linear approximation(s). As it is infeasible
to compute the exact bias of a linear approximation, one uses implicit as-
sumptions, such as the wrong-key randomization one (Ass. 3.2.2) and the
statistical independence of data between two successive rounds (in the spirit
of Lem. 3.2.2). The incidence of these assumptions has been well discussed
in the literature (see [42, 125, 174, 250]). Although several situations where
these assumptions can fail have been suggested and discussed, it is accepted
that the linear expression real bias should be well approximated in case the
of DES.
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Our experimental results go indeed in this direction. We have computed
the sample mean of the experimental biases B̂∗ and B̂, which can be com-
pared to the expected values of the densities given in Eq. (3.27) and in
Eq. (3.28). In case of a right key, the sample mean (averaged over the 42
samples) is equal to 5.5 · 10−7 with a standard deviation of 0.2 · 10−7. Thus,
under our statistical model, we can estimate that

Pr
[
4.9 · 10−7 ≤ E[B∗] ≤ 6.1 · 10−7

]
= 2Φ(3) − 1 ≈ 0.997

using a classical central-limit theorem reasoning19. This interval has to be
compared with the expected value of a random variable distributed accord-

ing to Eq. (3.27) furnished by our statistical model: E
[
B̂∗
]
≈ 5.674 · 10−7.

We can at least conclude that there is no significant linear hull effect in DES.
Our experiments provide furthermore a good opportunity to confirm the

validity of Ass. 3.2.2. The sample mean in case of wrong subkey candidates,
averaged over all the wrong subkeys and all experiments, is equal to 1.38 ·
10−7 with a standard deviation of 0.03 · 10−7, a value has to be compared
with E[B̂] = 1.345 · 10−7 given by ε = 0 where B̂ is distributed according to
(3.28) and the following confidence interval

Pr
[
1.29 · 10−7 ≤ E[B] ≤ 1.46 · 10−7

]
≈ 0.997.

This seems to fully legitimate Ass. 3.2.2 in the case of DES.

Experimental Results for the Neyman-Pearson Key-Ranking

The Neyman-Pearson ranking procedure described in the previous section
has been simulated in the context of 21 linear cryptanalysis of DES, using
the data than those described in the previous section. The following table
summarizes our experimental results on the complexity of the exhaustive
search part of the attack given 243 known plaintext-ciphertext pairs; we use
the following notation: µC denotes the average experimental complexity,
C85% the maximal complexity given a success probability of 85 %, which is
the success probability defined by Matsui in [203], Cmed the median, Cmin

and Cmax being the extremal values.

Matsui’s Ranking Optimal Ranking ∆

log2 µC 41.4144 40.8723 -31.32 %

log2 C85% 40.7503 40.6022 -9.75 %

log2 Cmed 38.1267 36.7748 -60.71 %

log2 Cmin 32.1699 31.3219 -40.00 %

log2 Cmax 45.4059 44.6236 -41.86 %

19We still have to keep in mind that the number of samples (42) is rather low.
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These results lead us to the following observations:

• The average complexity is decreased by a factor of about 30 %. Ac-
tually, the average complexity is not a good statistical indicator for
the average behavior of the linear cryptanalysis, because most cases
have a far lower complexity and only 3 cases have a complexity greater
than the average. Thus, those three cases have a considerable influ-
ence on the average complexity and it is worth examining the median
behavior.

• A perhaps more significant result is that the median complexity is
decreased by a factor of about 60 %. Although one have to be careful
with this result because of the small size of the statistical samples
number, this value seems to be more accurate regarding the real impact
of the improved rule as the average one.

• Although the optimal rule decreases the exhaustive search part com-
plexity on average, “pathological” cases where Matsui’s heuristic is
better than the Neyman-Pearson ranking procedure can occur. One
can explain this by the fact that the Σ densities are sometimes bad
approximations of the real ones, several heuristic assumptions being
involved.

As the data complexity and the computational complexity of a linear crypt-
analysis are closely related, it is possible (and desirable in the context of a
known-plaintext attack) to convert a gain in the first category to a gain in
the second one: even if we decrease sensibly the number of known plaintext-
ciphertext pairs, the complexity will remain within reasonable areas: for in-
stance, given 242.46 known plaintext-ciphertext pairs, Ĉ85% = 244.46 DES eval-
uations, and with only 242 pairs, Ĉ85% = 246.86; these experimental values
are summarized in the following table:

Data complexity 242.00 242.46 243.00

Time complexity 246.86 244.46 240.60

Success probability 85 % 85 % 85 %

3.2.6 Summary

In this section, we have proposed a new and precise statistical modelization
of various versions of Matsui’s linear cryptanalysis against DES. The accu-
racy of these results was then checked with experimental results obtained by
implementing the attack 21 times, and even if the number of attacks does
not allow us to draw definitive conclusions, they clearly tend to support the
heuristic assumptions we took.
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A second contribution of this section is the optimization of the most
recent (and most powerful) version of Matsui’s attack obtained when using
an optimal key-ranking procedure. Due to their genericity, the latter can
be used in various types of statistical attacks. Furthermore, we have pre-
sented experimental results which tend to indicate that optimal key-ranking
procedure allow to gain a non-negligible factor in terms of computational
complexity.

Finally, we can note that the Neyman-Pearson paradigm, in spite of its
simplicity, allowed us to state optimality results for attacks based on linear
cryptanalysis. An interesting consequence is that one can give strict bounds
on the best performance of an adversary implementing such attacks. The
next section aims at considering the theoretical modelizations of certain
classes of distinguishers at the light of those tools.

3.3 Statistical Modelization of Distinguishers

The theoretical modelization of generic statistical cryptanalytic procedures
against block ciphers has been studied by only few researchers. In [313,
316], Vaudenay introduces the general concept of iterated attacks and gives
security results against this class of attacks, as well as refined measures
of security towards linear and differential cryptanalysis. In an even more
abstract framework, we can furthermore outline the recent works of Maurer
et al. [212,214,215] where they develop a general theory of random systems
and prove several results about their properties in terms of distinguishability.

In this section, we make use of the Neyman-Pearson paradigm described
in §3.1 to study certain classes of generic attacks against block ciphers.
This allows us to derive new and tight bounds on the best advantage of any
distinguisher for these models of attack.

3.3.1 Preliminaries

First of all, we recall basic notions about cryptographic distinguishers and
about the Luby-Rackoff model of security [191] (we refer the reader to
the brief introduction of §2.4.2, page 53, and to the bibliographical ref-
erences therein). In the Luby-Rackoff security model, a distinguisher δν

is a computationally (and memory) unbounded Turing machine which can
play with an oracle Ω implementing a permutation C over some alphabet
B (e.g. B = {0, 1}n with n = 64 or n = 128). Typically, Ω can implement
either a permutation on B chosen uniformly at random in a given family
of permutations (i.e. a block cipher indexed by a key20), or a permutation
C∗ chosen uniformly at random from the set of all permutations on B; the
latter is usually called the perfect cipher.

20In this case, the randomness provides from the choice of the key.
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The distinguisher δν can submit a bounded number ν of queries to Ω and
ultimately outputs a decision bit “0” (if it guesses that C∗ was implemented
by Ω) or “1” (if it guesses that C was implemented by Ω); we are then
interested in characterizing and computing its advantage 21

Advδν (C,C∗) =
∣∣∣Pr

C
[δν(x) = 1]− Pr

C∗
[δν(x) = 1]

∣∣∣ (3.42)

where x = (x1, . . . , xν) is the vector of the values queried to the oracle;
another important measure is the best advantage of any distinguisher:

BestAdvν(C,C∗) = max
δν

Advδν (C,C∗)

Here, the maximum is taken over the set of all possible distinguishers be-
tween C and C∗ asking at most ν queries to Ω.

There is an important difference between adaptive and non-adaptive dis-
tinguishers: an adaptive distinguisher is allowed to wait for an answer before
submitting the next query, which may thus be a function of the previous an-
swer. Alg. 3.4 describes22 formally a ν-limited adaptive distinguisher, while
Alg. 3.5 do the same for a ν-limited non-adaptive distinguisher. We remark

1: Input: An oracle Ω implementing an unknown permutation U on B,
a complexity ν, functions fi, with 1 ≤ i ≤ ν, an acceptance function
accept.

2: Output: A decision bit.
3: Select a message x1 = f1() and get y1 = U(x1) from Ω.
4: Compute a message x2 = f2(x1, y1) and get y2 = U(x2) from Ω.
5: . . .
6: Compute a message xν = fν(x1, . . . , xν−1, y1, . . . , yν−1) and get yν =

U(xν) from Ω.
7: Output accept(x1, . . . , xν , y1, . . . , yν).

Algorithm 3.4: ν-Limited Adaptive Distinguisher

1: Input: An oracle Ω implementing an unknown permutation U on B, a
complexity ν, an acceptance function accept.

2: Output: A decision bit.
3: Select ν messages X = (x1, . . . , xν).
4: Get Y = (y1 = U(x1), . . . , yν = U(xν)).
5: Output accept(X,Y).

Algorithm 3.5: ν-Limited Non-Adaptive Distinguisher

21Note that the probabilities are taken on the permutation distribution (i.e. on the key)
and possibly on the distribution of the random coins needed by δν .

22These definitions are those of Vaudenay [320].
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that the core of Alg. 3.4 and Alg. 3.5 consists of the accept function (and of
the functions fi for the adaptive case) which actually define the attack used
to distinguish C from C∗.

It is worth noticing that the Luby-Rackoff security model is an extremely
strong model, since we put no restriction on the computational power of the
adversary. In this model, a “security proof” would mean that we are able to
provide an acceptable (i.e. tight and small) upper-bound on BestAdvν(C,C∗)
for a given block cipher C. As outlined in §2.4.2, the current state of re-
search is able to give security proofs only for very few constructions, mainly
for high-level schemes, like the Feistel cipher, whose round functions are
themselves extremely strong functions. For these reasons, one possibility to
slightly weaken the attack model consists in focusing on iterated distinguish-
ers.

Informally, the basic idea behind the concept of iterated distinguisher is
that we make use of an elementary distinguisher (or “core distinguisher”)
limited to d queries between a block cipher C and the ideal cipher C∗, and
that we iterate a certain number of times this core distinguisher (in a sta-
tistically independent way) with the goal of amplifying the advantage of
the core distinguisher. Note that we will restrict ourselves to non-adaptive
core distinguishers. First of all, we recall the definition of Vaudenay [316]
of a non-adaptive iterated distinguisher of order d, which we will denote by
δνiter(d) (see Alg. 3.6).

Definition 3.3.1 (Non-Adaptive Iterated Distinguisher). Let ν and d
be strictly positive integers, and let B be a set. Then, a non-adaptive iterated
distinguisher of order d and complexity ν, denoted δνiter(d), for a permuta-
tion on B, is a computationally unbounded Turing machine characterized
by a probability distribution DB on Bd, named the plaintext distribution, a
(possibly randomized) function test : B2d → {0, 1}, named a test function,
and a (possibly randomized) function accept : {0, 1}ν → {0, 1}, named an
acceptance function.

Actually, non-adaptive iterated distinguishers model a large number of
the known attacks against block ciphers.

• Linear cryptanalysis (see §2.3.3, page 45), as well as some of these vari-
ants (like non-linear cryptanalysis as proposed by Knudsen and Rob-
shaw [167] and by Shimoyama and Kaneko [297]) is an non-adaptive
iterated distinguisher of order d = 1.

• Differential cryptanalysis (see §2.3.3, page 40) as well as some of these
variants (like impossible differential attacks [27] and truncated differ-
ential attacks [161]) is an non-adaptive iterated distinguisher of order
d = 2.
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1: Input: An oracle Ω implementing an unknown permutation U on B, a
plaintext distribution DB, a complexity ν, a test function test, and an
acceptance function accept.

2: Output: A decision bit.
3: for i from 1 to ν do
4: Pick a random xi = (x1, . . . , xd) according to DB and submit them to

the oracle Ω.
5: Get the corresponding yi = (U(x1), . . . ,U(yd)) from Ω.
6: Pick a random bit bi with an expected value equal to test(xi,yi).
7: end for
8: Output a decision bit with an expected value equal to accept(b1, . . . , bν).

Algorithm 3.6: Non-Adaptive Iterated Distinguisher of Order d

• Differential-linear cryptanalysis [183] and its generalization [29] (see
§2.3.3, page 47) is an non-adaptive iterated distinguisher of order d =
2.

• Integral attacks (see §2.3.4, page 48) [134, 169] considering sums of α
words is a non-adaptive iterated distinguisher of order d = α.

There are statistical attacks which do not fit into this framework, mainly
because they store more than a single bit between the executions of the core
distinguisher: for instance, Vaudenay’s χ2 cryptanalysis [312], Davies’ attack
and all the non-surjective attacks (see §2.3.3, page 47), and several gener-
alizations of linear cryptanalysis, like the partitioning cryptanalysis [126] of
Harpes and Massey. Actually, all of these attacks are based on distinguish-
ers working on probability distributions defined on sets of cardinality greater
than two. Wagner’s boomerang attack [322] (see §2.3.3, page 44) as well as
its refinements (the amplified boomerang attack [158], and the rectangle
attack of Biham, Dunkelman and Keller [28]) can be seen as an adaptive
iterated distinguisher of order d = 4, meaning that the core distinguisher is
adaptive.

3.3.2 Distinguishing Two Binary Random Sources

In the following, we will assume the following simple statistical game: we
consider an oracle Ω which first draws a bit b uniformly at random from
{0, 1}. Depending on the value of b, Ω implements either a random source
distributed according to D0, or a random source distributed according to D1

(where D0 is referred to as an “ideal” distribution). The oracle Ω allows then
a distinguisher δν to submit at most ν uniformly distributed and statistically
independent queries; at the end of the game, δν must output a guess about
the bit b. We are then naturally interested in bounding the advantage of
any computationally unbounded distinguisher in this scenario.
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We now interpret this framework as a statistical hypothesis test. When
dealing with error probabilities, one usually proceeds as follows in the clas-
sical approach: one of the two possible error probabilities is fixed, and we
minimize the other error probability if we use the Neyman-Pearson lemma
to define the acceptance function. However, this approach lacks symmetry
and it is quite inconvenient in our case. Another possibility is to follow
a Bayesian approach and to assign prior probabilities π0 and π1 to both
hypotheses, respectively, and to assume that correct decisions are not pe-
nalized, while incorrect decisions are penalized equally, then the optimal
Bayesian decision rule is given by

accept(x) =





0 if π0 PrD0 [x] > π1 PrD1 [x]
c ∈U {0, 1} if π0 PrD0 [x] = π1 PrD1 [x]

1 if π0 PrD0 [x] < π1 PrD1 [x]
(3.43)

Here, c ∈U {0, 1} means that a bit23 c is drawn uniformly at random. In
this case, according to [274, page 583], the above rule minimizes the overall
error probability defined by

πe = π0α+ π1β (3.44)

where α is the probability that accept outputs “1” when the samples are
distributed according to D0, and β is the probability that accept outputs
“0” when the samples are actually distributed according to D1.

The link between the overall error probability defined by Eq. (3.44) and
the advantage defined by Eq. (3.42) is made clear by the following simple
lemma.

Lemma 3.3.1. Let πe denote the overall probability of error of a distin-
guisher δ as defined in Eq. (3.44) with π0 = π1 = 1

2 . Then,

Advδ(C,C
∗) = 1− 2πe = 1− (α+ β). (3.45)

Proof. Let x and y denote the vector of the queries and of the answers given
by an oracle Ω, respectively. First of all, by the definition of the advantage,
we have

Advδ(C,C∗) =
∣∣∣Pr

C
[δ(x,y) = 1]− Pr

C∗
[δ(x,y) = 1]

∣∣∣

=
∣∣∣1− Pr

C∗
[δ(x,y) = 1]− Pr

C
[δ(x,y) = 0]

∣∣∣

=
∣∣∣1− α− β

∣∣∣ =
∣∣∣1− (α+ β)

∣∣∣
23Actually, the acceptance function accept(.) does not need to be randomized: we can

make it output 0 if and only if π0 PrD0 [X = x] ≥ π1 PrD1 [X = x] without modifying the
overall error probability.
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Now, in order to prove the equality (3.45), we have still to show that α+β ≤
1. Let us assume the opposite, i.e. that α + β > 1. By the Neyman-
Pearson lemma, we know that the optimal Bayesian rule minimizes πe. Let
us “invert” the rule (i.e. we make it output the opposite result). Then,

πe = π0(1− α) + π1(1− β) =
1

2
(2− α− β) <

1

2
(3.46)

which implies that the inverted rule would possess a “better” πe, which is a
contradiction and proves the lemma.

In the following, we will consider the case encountered during a linear crypt-
analysis, namely the case where we have to distinguish between the two
following random sources: one of the sources generating independent and
uniformly distributed bits, while the second one is slightly biased. More for-
mally, let D0 be the uniform distribution on {0, 1} and let D1 be a probability
distribution defined as

Pr
D1

[X = 0] = 1− Pr
D1

[X = 1] =
1

2
+ ε

such that 0 < |ε| � 1
2 . First of all, we can describe precisely the shape of the

acceptance function of an optimal distinguisher between these two random
sources.

Lemma 3.3.2. Let D0 be the uniform distribution on {0, 1} and D1 be a
probability distribution defined as PrD1 [X = 0] = 1 − PrD1 [X = 1] = 1

2 + ε
with ε ≥ 0. Let δν be a computationally unbounded distinguisher limited to
ν queries implementing an acceptance function accept defined by

accept(u) = 1 ⇐⇒ u ≥ ν · log(1− 2ε)

log(1− 2ε)− log(1 + 2ε)
(3.47)

where 0 ≤ u ≤ ν is the number of times that the source outputs 0. Then δν

maximizes Advδν (D0,D1).

Proof. We know that optimal decision rule is defined by Eq. (3.43). In other
words, δν must decide for D1 if and only if

(
1

2
+ ε

)u(1

2
− ε
)ν−u

≥ 1

2ν

which is equivalent to

u log2

(
1 + 2ε

1− 2ε

)
+ ν log2(1− 2ε) ≥ 0

The lemma follows by noticing that ε is positive by assumption.
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Lem. 3.3.2 can be easily adapted for the case ε < 0, and we obtain a sym-
metric acceptance function satisfying

accept(u) = 1 ⇐⇒ u ≤ ν · log(1 + 2ε)

log(1 + 2ε)− log(1− 2ε)
.

Note furthermore that, when ε is small and positive (the other case being
similar), we can approximate very accurately Eq. (3.47) as

accept(u) = 1 ⇐⇒ u ≥ ν
(

1

2
+
ε

2

)
.

A Chernoff-Like Bound

We now focus on the advantage of an optimal distinguisher. Vaudenay gives
in [320] the following result.

Lemma 3.3.3 (Vaudenay [320]). For any computationally unbounded dis-
tinguisher δν limited to ν queries,

Advδν (D0,D1) ≤ 4|ε|√ν (3.48)

where D0 is the uniform distribution on {0, 1} and D1 is a probability dis-
tribution defined as PrD1 [X = 0] = 1− PrD1 [X = 1] = 1

2 + ε.

Note that Th. 3.3.3 indicates that ν should be in the order of ε−2 for hav-
ing a non-negligible advantage. However, it does not seem to capture the
asymptotic behavior of the advantage for ν → +∞, since the right-hand side
of Eq. (3.48) tends to the infinity when ν → +∞ and since Advδν is upper
bounded by 1. Let α(ν) and β(ν) denote the respective error probabilities
when an optimal distinguisher outputs a decision bit after having queries ν

samples. Clearly, the overall error probability π
(ν)
e = π0α

(ν) + π1β
(ν) of an

optimal Bayesian distinguisher defined according to Eq. (3.43) must decrease
towards zero as the number ν of samples increases (and thus the advantage
must asymptotically go to 1). It turns out that the decrease asymptotically
approaches an exponential in the number of samples drawn before the de-
cision, the exponent being given by the so-called Chernoff bound (stated in
Th. 3.3.1). We refer the reader to App. B for a very short introduction to the
theory behind the method of types, which is very useful to prove Chernoff’s
bound.

Theorem 3.3.1 (Chernoff). The best probability of error of the Bayesian
decision rule defined in (3.43) satisfies

lim
ν→+∞

1

ν
log

π
(ν)
e

2−νγ
= 0
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where γ = C(D0,D1) is the Chernoff information between D0 and D1 defined
by

C(D0,D1) = − min
0≤λ≤1

log2

(
∑

x∈X
Pr
X0

[x]λ Pr
X1

[x]1−λ
)
.

Note that the Bayesian error exponent does not depend on the actual value
of π0 and π1, as long as they are non-zero: essentially, the effect of the prior
probabilities is just washed out for large sample sizes. Using an improved
version of Chernoff’s theorem (Th. 3.3.1) adapted to probability distribu-
tions on binary sets, we can bound the advantage of the best linear-like
distinguisher as follows.

Theorem 3.3.2. For any computationally unbounded optimal iterated dis-
tinguisher δν of order 1 limited to ν queries,

1− (ν + 1)

2νγ−1
≤ Advδν

lin
(D0,D1) ≤ 1− 1

(ν + 1) · 2νγ−1
(3.49)

where γ = C(D0,D1) is the Chernoff information between D0, the uniform
distribution on {0, 1} and D1, a probability distribution defined as PrD1 [X =
0] = 1− PrD1 [X = 1] = 1

2 + ε.

Proof. In order to show the bounds given in Th. 3.3.2, we use an improved
version of Sanov’s Theorem than the one given in Th. B.2.1 tailored to

binary random variables. Let A(ν)
opt be the optimal acceptance region for δν

Let Eα(ν) ∈ Pν be the set of types such that

Eα(ν) =
{
x ∈ Pν : Dx 6∈ A(ν)

opt

}

when x← DXν
0
. Similarly,

Eβ(ν) =
{
x ∈ Pν : Dx ∈ A(ν)

opt

}
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when x← DXν
1
. Then,

Pr
Xν

0

[Eα(ν) ] =
∑

DX∈Eα(ν)∩Pν

Pr
Xν

0

[T (DX)]

≤
∑

DX∈Eα(ν)∩Pν

2−νD(DX ||X0)

≤
∑

DX∈Eα(ν)∩Pν

max
DX∈Eα(ν)∩Pν

2−νD(DX ||X0)

=
∑

DX∈Eα(ν)∩Pν

2
−νminDX∈Eα(ν)∩Pν D(DX ||X0)

≤
∑

DX∈Eα(ν)∩Pν

2
−νminDX∈Eα(ν)

D(DX ||X0)

=
∑

DX∈Eα(ν)∩Pν

2−νD(DX∗ ||X0)

≤ (ν + 1) · 2−νD(DX∗ ||X0)

where the last inequality comes from

|Pν | =
(
ν + |X | − 1

|X | − 1

)

The computation for upper bounding PrXν
1
[Eβ(ν) ] are similar. For the lower

bound, we need a set Eα(ν) such that for all large ν, we can find a distribution
in Eα(ν) ∩ Pν which is close to DX∗ . As Eα(ν) is the closure of its interior
(thus the interior must be non-empty), then since

⋃
ν Pν is dense in the set

of all distributions, it follows that Eα(ν) ∩ Pν is non-empty for all ν ≥ ν0

for some ν0. We can then find a sequence of distributions DXν such that
DXν ∈ Eα(ν) ∩ Pν and D(DXν ||DXν

0
)→ D(DX∗ ||Xν

0
). For each ν ≥ ν0,

Pr
Xν

0

[Eα(ν) ] =
∑

DX∈Eα(ν)∩Pν

Pr
Xν

0

[T (DX)]

≥ Pr
Xν

0

[T (DX)]

≥ 2−νD(DXν ||DX0
)

ν + 1

Consequently,

lim inf
1

ν
Pr
Xν

0

[Eα(ν) ] ≥ lim inf

(
− log(ν + 1)

ν
−D(DXν ||X0)

)

= −D(DX∗ ||DX0)

The computations are similar for lower bounding PrXν
1
[Eβ(ν) ] Combining the

upper bounds derived before and this lower bound, and the computations
of App. B yields Th. 3.3.2.
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Note that in our case, we can express the Chernoff information between
D0 and D1 as

γ = C(D0,D1) = − min
0≤λ≤1

2−λ · ((1
2

+ ε)λ + (
1

2
− ε)1−λ)

is maximal for

λ =
log
(
− log(1−2ε)

log(1+2ε)

)

log
(

1+2ε
1−2ε

)
.

Thus, using a Taylor approximation, we finally get that the Chernoff expo-
nent satisfies

γ = C(D0,D1) = −ε
2

2
+O(ε4).

This clearly matches the results of Lem. 3.48 stating that the advantage
of an optimal distinguisher becomes significant when ν ≈ ε−2. Finally, we
note that the derivation of Chernoff’s bound is still valid for any discrete
probability distribution pairs; consequently, they are not extremely tight
when applied in our statistical scenario.

Tighter Bounds

We now prove tighter bounds on the best advantage of any iterated distin-
guisher of order 1 using the same techniques than in the proof of Th. 3.2.5.
First of all, let

z =
k + 1

2 − np√
np(1− p)

;

the following notation will then used later:

Φ
(n,p)
down(k) = Φ(z)− (1− 2p)(z2 − 1)φ(z)

6
√
np(1− p)

− 0.056√
np(1− p)

(3.50)

and

Φ
(n,p)
up (k) = Φ(z)− (1− 2p)(z2 − 1)φ(z)

6
√
np(1− p)

+
0.056√
np(1− p)

(3.51)

represents the lower and the upper bound of Raff’s theorem Th. 3.2.4, re-
spectively. Let us furthermore denote by

τ =
log(1− 2ε)

log(1− 2ε)− log(1 + 2ε)
(3.52)

the optimal threshold defined by Lem. 3.3.2. Let U denote a random variable
modeling the number of times the unknown source outputs 1. Then, we have,
according to Lem. 3.3.1 and Lem. 3.3.2,

BestAdvν(D0,D1) = 1− (α+ β)
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where
α = Pr

D0

[U > dτνe] and β = Pr
D1

[U < bτνc] .

Using the notation defined in Eq. (3.50) and in Eq. (3.51), we get

1− (α+ β) ≥ Φ
(ν, 1

2
)

down (bτνc)− Φ
(ν, 1

2
+ε)

up (bτνc).

Similarly, the following lower bound may be derived:

1− (α+ β) ≤ Φ
(ν, 1

2
)

up (bτνc)− Φ
(ν, 1

2
+ε)

down (bτνc).

We have thus proven the following theorem.

Theorem 3.3.3. Let D0 be the uniform distribution on {0, 1} and D1 be a
probability distribution defined as PrD1 [X = 0] = 1− PrD1 [X = 1] = 1

2 + ε.
Then, for an optimal computationally unbounded iterated distinguisher δν

of order 1 limited to ν queries,

BestAdvν(D0,D1) ≥ Φ
(ν, 1

2
)

down (bτνc)− Φ
(ν, 1

2
+ε)

up (bτνc)

and

BestAdvν(D0,D1) ≤ Φ
(ν, 1

2
)

up (bτνc) − Φ
(ν, 1

2
+ε)

down (bτνc),
where τ , Φdown, and Φup are defined in Eq. (3.52), Eq. (3.50), and Eq. (3.51),
respectively.

Without loss of generality, let us assume that ε > 0 is small and fixed. For
ν → +∞, we have τ ≈ 1

2 + ε
2 , and it is then easy to verify that

lim
ν→+∞

Φ
(ν, 1

2
)

down(bτνc) = lim
ν→+∞

Φ
(ν, 1

2
)

up (bτνc) = 1

as well as

lim
ν→+∞

Φ
(ν, 1

2
+ε)

up (bτνc) = lim
ν→+∞

Φ
(ν, 1

2
)

down (bτνc) = 0.

Thus, we have accordingly

lim
ν→+∞

BestAdvν(D0,D1) = 1.

3.3.3 Optimal Linear Distinguishers

A linear distinguisher δνlin is a (possibly computationally unbounded) Turing
machine which can play with an oracle Ω (see Alg. 3.7); it is actually a sub-
class of iterated distinguishers of order 1 which uses a linear approximation
as test(.) function. Let us now consider the following scenario. We have a
permutation C on {0, 1}n for which

Pr[a · x⊕ b · C(x) = 0] =
1

2
+ ε



— 107 —

1: Input: An oracle Ω implementing an unknown permutation U on B,
a complexity ν, a linear approximation (a,b), an acceptance function
accept.

2: Output: A decision bit.
3: Initialize a counter u to 0.
4: for i = 1 to ν do
5: Pick uniformly at random x and query U(x) to the oracle Ω.
6: if a · x⊕ b · U(x) = 0 then
7: Increment u.
8: end if
9: end for

10: Output accept(u).

Algorithm 3.7: Classical modelization of a linear distinguisher δνlin.

for half of the keys, and

Pr[a · x⊕ b · C(x) = 0] =
1

2
− ε

for the other half, with ε > 0. This corresponds to an idealized version
of a linear cryptanalysis where Ass. 3.2.1 holds. We can rewrite the above
expression as

Pr[a · x⊕ b · C(x) = 0] =
1

2
+ (−1)κε

for a fixed value κ ∈ {0, 1} depending on the key. We bound now the
advantage of an optimal linear distinguisher δνlin knowing κ between C and
a uniformly distributed binary iid source D0 using Th. 3.3.3, which gives us

Advδν
lin

(C,D0) ≤ Φ
(ν, 1

2
)

up (bτνc) −Φ
(ν, 1

2
+ε)

down (bτνc)

where τ , Φdown, and Φup are defined in Eq. (3.52), Eq. (3.50), and Eq. (3.51),
respectively. According to Vaudenay [320], the advantage of an optimal
linear distinguisher aiming at distinguishing C∗ from a uniformly distributed
binary iid source is bounded by

Advδν
lin

(C∗,D0) ≤ 3 3

√
ν

2n − 1
(3.53)

where n is the block size of the permutations. Then, using the triangle
inequality, we note that

Advδν
lin

(C∗,C) ≤ Advδν
lin

(C∗,D0) + Advδν
lin

(C,D0).

Then, we are in position to prove the following result.
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Corollary 3.3.1. Let C be a permutation such that

Pr[a · x⊕ b · C(x) = 0] =
1

2
+ (−1)κε

for κ ∈ {0, 1} where κ = 0 for half of the keys. Then, the advantage of
any linear distinguisher δνlin limited to ν queries between C and C∗ is upper
bounded by

Advδν
lin

(C∗,C) ≤ Φ
(ν, 1

2
)

up (bτνc)− Φ
(ν, 1

2
+ε)

down (bτνc) + 3 3

√
ν

2n − 1
(3.54)

where n is the block size of the permutations and where τ , Φdown, and Φup

are defined in Eq. (3.52), Eq. (3.50), and Eq. (3.51), respectively.

Proof. These distinguishers are a particular case of more powerful ones
which are given the value of κ as input (for C) or a uniformly distributed ran-
dom bit (for C∗). Using the triangular inequality, Th. 3.3.3, and Eq. (3.53),
we obtain the claimed result.

We would like to remark that the condition that δνlin knows the value κ is not
practically annoying, since it would be possible to build an optimal linear
distinguisher based on the acceptance function defined by

accept(u) = 1 ⇐⇒
1
2

(
1
2 + ε

)u (1
2 − ε

)ν−u
+ 1

2

(
1
2 − ε

)u (1
2 + ε

)ν−u
1
2ν

≥ 1

However, in this case, the interval of the u values for which accept(u) = 1
can no more be expressed analytically24.

3.3.4 Optimal Differential Distinguishers

Similarly, we can briefly study differential distinguishers with help of the
same statistical tools. A differential distinguisher δνdiff is a (possibly compu-
tationally unbounded) Turing machine which is able to submit chosen pairs
of plaintext to an oracle Ω implementing with probability π0 a permutation
C∗ drawn uniformly at random from the set of all permutations on m-bit
strings, or with probability π1, a fixed permutation C (see Alg. 3.8, which
is the definition of a differential distinguisher given by Vaudenay [320]).
Although the cryptanalytical settings are quite different (δνdiff can indeed
submit chosen queries), the distinguishing process is in a statistical point of
view very similar to linear distinguishers.

If we look closely at Alg. 3.8, we note that, although the complexity ν is
given in advance as input and is (implicitly) fixed, the effective number of

24Computing this interval is however possible if we solve this expression numerically.
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1: Input: An oracle Ω implementing an unknown permutation U on B, a
complexity ν, a differential (a, b).

2: Output: A decision bit.
3: for i = 1 to ν do
4: Pick uniformly at random x and query U(x) and U(x+a) to the oracle

Ω.
5: if U(x+ a) = U(x) + b then
6: Output “1” and stop.
7: end if
8: end for
9: Output “0”.

Algorithm 3.8: Classical modelization of a differential distinguisher δνdiff .

queries to the oracle is merely a random variable. In other words, depending
on the situation, δνdiff may decide to explicitely ignore some information. In
fact, we can see the class of distinguishers submitting a random number
of queries to the oracle as a generalization of the class of distinguishers
submitting a fixed number of queries. We will study this generalization,
called sequential distinguishers, in a cryptanalytical context in §3.3.7. In
order to better understand the statistical decision process behind differential
distinguishers, we in give in Alg. 3.9 an “unorthodox” modelization, denoted
δ′diff , which is very similar to linear distinguishers.

1: Input: An oracle Ω implementing an unknown permutation U on B, a
complexity ν, a differential (a, b), an acceptance function accept.

2: Output: A decision bit.
3: Initialize a counter u to zero.
4: for i = 1 to ν do
5: Pick uniformly at random x and query U(x) and U(x+a) to the oracle

Ω.
6: if U(x+ a) = U(x) + b then
7: Increment u.
8: end if
9: end for

10: Output accept(u).

Algorithm 3.9: Unorthodox modelization δ ′diff of a differential distin-
guisher.

As outlined in §2.3.3, page 40, differential cryptanalysis depends on the
quantity DPU(a, b) = PrX [U(X+a) = U(X)+ b] for a uniformly distributed
plaintexts X. We assume now the following statistical scenario: the proba-
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bility that the counter u is incremented in Alg. 3.9 is equal25 to 1
2m−1 in the

case if U = C∗, where m is the block-size of the permutation, and to 1+ε
2m−1

if U = C, for 0 < ε ≤ 2m− 2. Applying the optimal Bayesian rule defined in
Eq. (3.43), the optimal acceptance function will make δ ′diff output 1 if

(
ν

u

)(
1 + ε

2m − 1

)u(
1− 1 + ε

2m − 1

)ν−u
≥
(
ν

u

)(
1

2m − 1

)u(2m − 2

2m − 1

)ν−u
,

where u is the final value of the counter. Reworking algebraically the above
expression, we get the following result.

Lemma 3.3.4. Let D0 be a probability distribution on {0, 1} defined as
PrD0 [X = 0] = 1−PrD0 [X = 1] = 1

2m−1 and D1 be a probability distribution

defined as PrD1 [X = 0] = 1 − PrD1 [X = 1] = 1+ε
2m−1 with 0 < ε ≤ 2m − 2.

Let δν be a differential distinguisher limited to ν queries implementing an
acceptance function accept defined by

accept(u) = 1 ⇐⇒ u ≥ ν · log(2m − 2)− log(2m − 2− ε)
log((2m − 2)(1 + ε))− log(2m − 2− ε) (3.55)

where 0 ≤ u ≤ ν is the number of times that the source outputs 0. Then δν

has a maximal advantage for distinguishing D0 from D1.

Note that, for small ε, Eq. (3.55) may be approximated by

accept(u) = 1 ⇐⇒ u ≥ ν ·
(

1

2m − 1
+

2m−1 − 1

(2m − 2)(2m − 1)
· ε
)
.

Finally, if we come back to Alg. 3.8, we note that δdiff as defined in Alg. 3.8
is an optimal differential distinguisher submitting n queries to the oracle if
and only if Eq. (3.55) is satisfied for all u ∈ N with 1 < u ≤ ν and for all
0 < ε ≤ 2m − 2. Actually, it is not difficult to artificially build a situation
where Alg. 3.8 is not optimal: it is sufficient to take a characteristic (a, b)
with DPC(a, b) true with very high probability. In this case, it is not sufficient
for δνdiff to wait for only one differential event and to stop, since if it is unique
during the ν samples, it would have been better to output 0. However, if we
have a look at Eq. (3.55), we can note that Alg. 3.8 captures well real-world
situations, where exploited differential probabilities are usually only slightly
larger than ideal ones.

As outlined page 43, we frequently encounter the concept of signal-to-
noise ratio which was used by Biham and Shamir in the papers defining the
differential cryptanalysis [31–33]; it is defined as being the ratio of probabil-
ity of the right (sub-)key being suggested by a right pair and the probability
of a random (sub-)key being suggested by a random pair, given the initial

25It is well-known [320] that the expectation over the key space of DPC∗

(a, b) is equal
to 1

2m−1
, where m is the block-size of the permutation.



— 111 —

difference. By empirical evidence, they suggested that when this ratio is
around 1-2, about 20-40 right pairs are sufficient for a successful attack, and
when this ratio is higher, even 3-4 right pairs are enough; clearly, this is a
(implicitly defined) likelihood-ratio test, which turns out to be optimal in
terms of error probabilities. Finally, coming back to the quotation of Naka-
hara on the same page 43, and at the light of our considerations, it results
naturally that there is no better strategy than flipping a coin in the case
where the signal-to-noise ratio is equal to 1.

3.3.5 Generalized Linear Distinguishers

As outlined several times in the previous sections, the (idealized) statis-
tical core of linear distinguishers (and therefore, of linear cryptanalysis)
consists in sampling a biased binary source generating iid bits. Soon after
the publication of [202], several attempts in generalizing linear cryptanaly-
sis have been published. For instance, Kaliski and Robshaw [153] demon-
strate how it is possible to combine several statistical independent linear
approximations involving the same key bits. On their side, Harpes, Kramer
and Massey [125] replace the linear approximation by so-called input-output
sums, i.e. balanced binary-valued functions; they prove the actual effective-
ness of such a generalization by exhibiting a block cipher secure against
conventional linear cryptanalysis but vulnerable to their attack. Practical
examples are the attack of Knudsen and Robshaw [167] against LOKI 91 and
the one of Shimoyama and Kaneko [297] against DES; both attacks are
based on non-linear probabilistic biased approximations. However, all these
attacks sample binary probability spaces.

Another direction to generalize linear cryptanalysis was opened by Vau-
denay in [312]: in this paper, he defines another kind of attack against DES,
named χ2-attack, and he demonstrates that one can obtain an attack only
slightly less powerful than a linear cryptanalysis, but without the need to
describe mathematically what happens in the core of the block cipher. Vau-
denay’s attack is, as its name suggests it, based on a χ2 statistical test, and
interestingly, it can sample probability spaces whose cardinality is larger
than two.

Another noteworthy work is the one of Harpes and Massey [126]: in this
paper, they generalize the results of [125] by considering partitions pairs of
the input and output spaces. Let X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Yn}
be partitions of the input and output sets, respectively, where Xi and Yi are
called “blocks”. Then, the pair (X ,Y) is called a partition-pair if all blocks
of X (resp. Y) contain the same number of plaintexts (resp. ciphertexts).
A partitioning cryptanalysis exploits the fact that the probabilities

Pr [(X, fk(X)) ∈ (X ,Y)]

may not be uniformly distributed for a block cipher f for a fixed key k. In
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order to characterize the non-uniformity of a sample distribution, Harpes
and Massey consider mainly two “measures” between a discrete probability
distribution and the uniform distribution, named peak imbalance Ip and
squared Euclidean imbalance, IE defined as follows

Ip(X) =
m

m− 1

(
max

0≤i<m
Pr[X = i]− 1

m

)
(3.56)

and

IE(X) =
m

m− 1

m−1∑

i=0

(
Pr[X = i]− 1

m

)2

, (3.57)

where X is a random variable distributed according to the sampling dis-
tribution and m is the cardinality of the probability space. Given a set
of (sub-)key candidates, the attack choose the right (sub-)key as being the
one maximizing the chosen bias measure. They report to have observed on
toy examples that IE seems to perform better than Ip. Harpes and Massey
results were completed later by Jakobsen and Harpes [140,141], where they
develop useful bounds to estimate the resistance of block ciphers to par-
titioning cryptanalysis, with the help of spectral techniques; these bounds
are relative to the squared Euclidean imbalance only, but this choice is not
motivated in a formal way. To the best of our knowledge, the first practical
example of partitioning cryptanalysis breaking a block cipher is the attack
known as “stochastic cryptanalysis” [225] proposed by Minier and Gilbert
against Crypton [186, 187].

Finally, the NESSIE [247] effort resulted in a few papers investigating the
power of linear (or non-linear) approximations based on different algebraic
structures, like Z4. For instance, Parker [259] shows how to approximate
constituent functions of an S-box by any linear function over any weighted
alphabet. However, Parker observes that it is not straightforward to piece
these generalized linear approximations together. In [303], Standaert et al.
take advantage of approximations in Z4 by recombining the values in order
to reduce the problem to the well-known binary case; they still obtain more
interesting biases comparatively to a classical linear cryptanalysis.

In this part, we address the statistical problems encountered in these
works in the same manner than done for classical linear cryptanalysis, and
we show that our approach easily allows to derive optimal distinguishers and
to compute their complexities in terms of necessary number of samples; for
this purpose, we briefly describe some results obtained in collaboration with
Thomas Baignères and Serge Vaudenay; we refer to [14] for the proofs.

Let us consider a random source generating a sequence of iid discrete
random variables Zν = (Z1, . . . , Zν) distributed according either to D0 or
according to D1, where both probability distributions are defined over a
finite set Z; note that we do not require that the cardinality of Z is equal
to 2. Here, we will refer to D0 has being an “ideal” distribution. Let us now
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apply the optimal Bayesian rule defined in Eq. (3.43) to this scenario. Let
us denote by zν = (z1, . . . , zν) a sample vector obtained from the unknown
source. We denote by

llr(zν) =
∑

a∈Z:N(a|zν)>0

N(a|zν) log
PrD0 [a]

PrD1 [a]

the corresponding log-likelihood ratio. It is then straightforward to see that
the optimal acceptance function is defined by

accept(zν) = 1 ⇐⇒ llr(zν) ≤ 0

where N(a|zν) denotes the number of occurences of the symbol a in the
sample zν ∈ Zν , with the convention that log 0

p = −∞ and log p
0 = +∞.

The following result is then a direct application of the central limit theorem
(see Th. A.2.1). It makes heavy use of the Kullback-Leibler distance between
discrete probability distributions (see Def. B.1.1, page 264).

Lemma 3.3.5. Let Z1, Z2, . . . be a sequence of iid random variables of distri-
bution D and let D0 and D1 be two discrete probability distributions sharing
the same support. Then,

Pr

[
llr(Zν)− νµ

σ
√
ν

< t

]
n→∞

−−−−−−−→ Φ(t),

where µ = µj with µ0 = D(D0 ‖ D1) ≥ 0 and µ1 = −D(D1 ‖ D0) ≤ 0, and
that σ2 is

σj
2 =

∑

z∈Z
Pr
Dj

[z]

(
log

PrD0 [z]

PrD1 [z]

)2

− µ2
j

when D = Dj for j ∈ {0, 1}.

We now assume that D0 and D1 are “close” to each other; this is a frequently
encountered situation during a cryptanalysis.

Assumption 3.3.1. Let D0 and D1 be two discrete probability distributions
sharing the same support. Then,

∀z ∈ Z Pr
D0

[z] = πz and Pr
D1

[z] = πz + εz with |εz | � πz.

Under Ass. 3.3.1, and using a Taylor series argument, we get

µ0 ≈ µ1 ≈
1

2

∑

z∈Z

ε2z
πz

and σ2
0 ≈ σ2

1 ≈
∑

z∈Z

ε2z
πz
.

The following heuristic result gives an estimation of the required number of
samples an optimal distinguisher needs, as well as its implied error proba-
bility, for distinguishing two close probability distributions D0 and D1.
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Theorem 3.3.4 (Baignères [15]). Let Z1, . . . , Zν be iid random variables
over the set Z of distribution D, D0 and D1 be two discrete probability distri-
butions sharing the same support which are close to each other, and n be the
number of samples of an optimal distinguisher between D = D0 or D = D1.
Let d be a real number such that

ν =
d

∑

z∈Z

ε2z
πz

≈ d

2D(D0 ‖ D1)

(where πz = PrD0 [z] and πz + εz = PrD1 [z]). Then, the overall probability of
error is πe ≈ Φ(−

√
d/2).

Let us now assume that D0 is the uniform distribution. When D1 is a
distribution whose support is Z itself and which is close to D0, Th. 3.3.4
can be rewritten with

ν =
d

|Z|
∑

z∈Z
ε2z

This shows that the “distinguishability” can be measured by means of the
Euclidean distance between D0 and D1. In the very specific case where
Z = {0, 1}, we have ε0 = −ε1 = ε and one can see that n is proportional
to ε−2, which is a well-known result due to Matsui (see §3.2). We now
recall what appears to be the natural measure of the bias of a distribution,
considering the needed number of samples and Ass. 3.3.1.

Definition 3.3.2 (Squared Euclidean Imbalance). Let εz = PrD1 [z] −
1
|Z| . The Squared Euclidean Imbalance (SEI) ∆(D1) of a distribution D1 of
support Z from the uniform distribution is defined by

∆(D1) = |Z|
∑

z∈Z
ε2z.

Although the appellation “SEI” coincides with the one of [125], note that
the definitions slightly differ. It is well-known (for instance see [121, 159])
that a χ2 cryptanalysis needs O(1/∆(D1)) queries to succeed, which is by
no means worse, up to a constant term, than an optimal distinguisher. As
recalled in §3.1.2, a χ2 statistical test is asymptotically equivalent to a
generalized likelihood-ratio test developed for a multinomial distribution;
although such tests are not optimal in general, they usually perform rea-
sonably well. The above results confirm this fact: a cryptanalyst will not
loose any essential information in the case she can describe only one of the
two distributions, but the precise knowledge of both distributions allows to
derive an optimal attack. In other words, when it is impossible to derive
both probability distributions, or when an attack involves many different
distributions and only one is known, the best practical alternative to an
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optimal distinguisher seems to be a χ2 attack, as proposed in [312]. This
fact corroborates the intuition stipulating that χ2 attacks are useful when
one does not know precisely what happens in the attacked block cipher.

We now assume that random variables are bitstrings, so that Z = {0, 1}`.
According to the notations of Ass. 3.3.1, let D1 be the probability distribu-
tion defined by the set {εz}z∈Z , D0 being the uniform distribution on Z.
We define the Fourier transform of D1 at point u ∈ Z as

ε̂u =
∑

z∈Z
(−1)u·z εz . (3.58)

We note that the involution property of the Fourier transform leads to

εz =
1

2`

∑

u∈Z
(−1)u·z ε̂u . (3.59)

The next lemma can be compared to Parseval’s Theorem.

Lemma 3.3.6. In the case where D0 is the uniform distribution over Z =
{0, 1}`, the SEI and the Fourier coefficients are related by

∆(D1) =
∑

u∈Z
ε̂ 2
u .

We now recall the definition of the linear probability of a Boolean random
variable B:

LP(B) = (Pr[B = 0]− Pr[B = 1])2 = (2Pr[B = 0]− 1)2 =
(
E
[
(−1)B

])2
.

Lemma 3.3.7. Let Z = {0, 1}`. If Z ∈ Z is a random variable distributed
according to D1, the SEI and the linear probability are related by

∆(D1) =
∑

w∈Z\{0}
LP(w · Z).

Corollary 3.3.2. Let Z be a random variable over Z = {0, 1}` of distribu-
tion D1 and let LPZmax be the maximum of LP(w ·Z) over w ∈ Z \ {0}. We
have

∆(D1) ≤
(
2` − 1

)
LPZmax.

Interpreting Th. 3.3.4 and Cor. 3.3.2 together, we note that the sample
complexity of the best distinguisher between two distributions of random
bit strings can decrease with a factor up to 2` when compared to the best
linear distinguisher. It is interesting to note that there are cases where this
bound is tight. For example if D1 is such that PrD1 [z] is 1

2` +
(
1− 1

2`

)
γ if

z = 0, and 1
2` − 1

2` γ otherwise (where γ is a positive constant), it can be
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shown that LP(w · Z) = γ2 for all w 6= 0. Hence ∆(D1) = (2` − 1)γ2 and
LPmax = γ2.

So far, we have considered the scenario where an optimal distinguishers
is fed with two random variables following two distinct distributions in a
set Z = {0, 1}` where ` should not be too large from an implementation
point of view. If we try to distinguish two random variables distributed
in some set {0, 1}`′ of large cardinality (e.g. where `′ = 128), we will not
be able to implement the best distinguisher of as the memory requirement
would be too high (since we must keep a counter for each possible outcome
z). Instead, we can reduce the source space to a smaller space Z = {0, 1}`
by means of a projection26 h : {0, 1}`′ → Z defining, for a random variable
S ∈ {0, 1}`′ of distribution D̃, a random variable Z = h(S) of distribution
D. Here we consider that h is a balanced function and that D̃0 is a uniform
distribution, so that D0 is the uniform distribution as well. This is a typical
construction in a real-life block cipher cryptanalysis, where the block length
is quite large. Now, even though we know which distinguisher is the best to
use in order to distinguish D0 from D1, it is still not clear how the projection
h has to be chosen. Probably the most classical example arises when ` = 1
and h(S) = a · S for some non-zero a ∈ {0, 1}`. We then talk about a
linear distinguisher (as discussed in the previous sections). In this case, we
note that ∆(D1) = LP(a · S) ≤ LPSmax. Modern ciphers protect themselves
against that type of distinguisher by bounding the value of LPS

max. A natural
extension of the previous scheme would be to consider any linear projection
onto wider spaces, e.g. to consider h(S) ∈ Z = {0, 1}` (where ` > 1 is still
small) such that h is GF(2)-linear. We then talk about an extended linear
distinguisher. It seems natural to wonder about the complexity gap between
linear cryptanalysis and this extension. The following result proves that if
a cipher provably resists classical linear cryptanalysis, it is (to some extent)
protected against extended linear cryptanalysis.

Theorem 3.3.5. Let S be a random variable over {0, 1}`′ . Whenever the
source space is reduced by a projection h : {0, 1}`′ → {0, 1}` in a GF(2)-linear
way, we have ∆(h(S)) ≤ (2` − 1)LPSmax.

A classical example of a linear space reduction arises when considering con-

catenation of several projections. For example, denoting D
(i)
1 = h(i)(D̃1) for

i ∈ {1, . . . , `} where h(i) : {0, 1}`′ → {0, 1} is linear, we consider h(S) =(
h(1)(S), . . . , h(n)(S)

)
. This corresponds to the works of Kaliski and Rob-

shaw [153] (where different linear characteristics involving identical key bits
are merged) and to the situation discussed in §3.2.4 (where different linear
characteristics involving different key bits are merged). In the latter situa-

tion, if no assumption is made about the dependency among the ∆(D
(i)
1 )’s,

26We borrow this appellation from Vaudenay [312]; the same expression is used within
Wagner’s unified view of block cipher cryptanalysis [323] as well.
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Th. 3.3.5 tells us ∆(D
(1)
1 ×· · ·×D

(`)
1 ) ≤ (2`−1)LPSmax. The following propo-

sition tells us what happens in general when the D
(i)
1 ’s are independent but

do not necessarily come from a linear projection nor a Boolean projection.

Theorem 3.3.6. Consider the case where D1 = D
(1)
1 × · · · × D

(`)
1 . If

D
(1)
1 , . . . ,D

(`)
1 are independent distributions, then

∆(D1) + 1 =
∏̀

i=1

(
∆(D

(i)
1 ) + 1

)
.

Therefore, ∆(D1) can be approximated by the sum of the ∆(D
(i)
1 )’s.

This result tells us that merging ` independent biases should only be consid-
ered when their respective amplitudes are within the same order of magni-
tude. In the light of the preceeding discussion, the cryptanalyst may wonder
if it is possible to find a distinguisher with a high advantage even though the
value of LPSmax is very small. We refer the reader to [14], where an example
for which it is indeed the case is provided.

Generalized linear distinguishers have recently been used in [189,190] by
Lu and Vaudenay to derive very efficient distinguishing attacks against E0,
a stream cipher used in the Bluetooth technology [43].

3.3.6 Aggregate Distinguishers

Optimal distinguishers can be implemented in an efficient way in most sit-
uations, i.e. when the cardinality of the underlying probability spaces keeps
“reasonably” small. These algorithms, however, are hardly practical if the
underlying probability distributions share a support whose cardinality is
very large, since they need in this case too large amounts of memory, as we
will explain it later. In the following, we briefly describe the construction of
suboptimal distinguishing algorithms which may however still be rather effi-
cient in terms of the number of necessary samples and which need practical
(and fixed in advance) number of memory cells.

As outlined previously, a natural “measure” of bias is the squared Eu-
clidean imbalance ∆(D0,D1), between a distribution D0 and a close distri-
bution D1 defined by

∆(D0,D1) =
∑

x∈X

ε2x
πx

(3.60)

since ∆(D0,D1) is, according to Th. 3.3.4, directly linked to the number of
sample required for an optimal distinguisher to distinguish both probability
distributions with a good success probability. In order to be able to imple-
ment an optimal distinguisher, the evaluation of the following likelihood-
ratio is required:

llr(zν) =
∑

x∈X
νx(z

ν) log
PrD0 [x]

PrD1 [x]
. (3.61)
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where νx(z
ν) denotes the number of times the symbol x appears in zν . Let

us now consider the situation where one knows how to compute efficiently the
probabilities πx = PrD0 [x] and πx + εx = PrD1 [x] of a given element x, but
where the cardinality of X is very large. In this case, we can sequentially27

evaluate the sum of Eq. (3.61) and we do not need to store the value of

log
PrD0 [x]

PrD1 [x]
(3.62)

for each x. Thus, the computational complexity of evaluating Eq. (3.61) is
ν times as costly as the (average) time required to evaluate Eq. (3.62), and
the memory complexity is negligible.

The situation becomes slightly more complicated in these case where it
not possible to evaluate Eq. (3.62) on-the-fly. This can have several reasons:
either the evaluation of Eq. (3.62) is too costly, or values were obtained using
some heuristic approximations, and they have to be stored, for instance. In
this case, the amount of memory needed to manage the counters, and thus
to compute Eq. (3.62), may be too large to be possible in practice. For
instance, it would be, at the time of writing, quite costly to implement an
optimal distinguisher between probability distributions defined on a support
X with |X | � 232. Our goal is thus to construct sub-optimal distinguishers
taking still a reasonable amount of samples and which do not require too
much memory.

In order to get some intuition into our problem, let us consider the
following scenario: D0 is the uniform probability distribution on a set X ,
and D1 is a probability distribution defined on the same set X such that for
X ′ ⊂ X , X ′′ ⊂ X , X ′ ∩ X ′′ = ∅, ω = |X ′| = |X ′′| � X , and

Pr
D1

[x] =
1

|X | + ε for all x ∈ X ′, Pr
D1

[x] =
1

|X | − ε for all x ∈ X ′′,

for some ε > 0, and PrD1 [x] = 1
|X | for all x /∈ X ′ ∪X ′′. Clearly, the “bias” of

the distribution D1 is concentrated on X ′ ∪ X ′′. Let us now define a proba-
bility distribution D′1 derived from D1 as follows: we aggregate all x ∈ X ′ to
a single element x′, and we assign it the probability ω( 1

|X | + ε); similarly, we

aggregate all x ∈ X ′′ to a single element x′′, and we assign it the probability
ω( 1
|X | − ε); finally, we aggregate all x /∈ X ′ ∪ X ′′ to a single element x∗ and

we assign it the probability 1 − 2ω
|X | . Similarly, we build a new probability

distribution out of D0 by assigning the probability ω
|X | to x′, the probability

ω
|X | to x′′, and 1 − 2ω

|X | to x∗. The intuition behind this construction is the
following: one concentrates the distinguishing efforts on biased elements of
D1, since other elements do not give any information. Clearly, an optimal

27Thus, we do not even need to store zν nor to manage counters νx(zν) for each possible
x.
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distinguisher aiming at distinguishing D0 from D1 will need, given a fixed
overall success probability, exactly the same amount of samples than for
distinguishing D′0 from D′1 (i.e. (2|X |ωε2)−1) but interestingly, the underly-
ing probability distributions are far simpler. If we cannot easily compute
on-the-fly the values of Eq. (3.62), then we can restrict ourselves to manage
2ω (instead of |X |) memory cells (i.e. by storing in a table for an element
x ∈ X ′ ∪ X ′′ the value κ ∈ {−1, 1} of its probability 1

|X | + κε, the elements

not present in the table being assigned the probability 1
|X |). Thus, by defin-

ing a distinguisher interpreting D0 and D1 as D′0 and D′1, respectively, one
can decrease the memory needs without any lost of distinguishing power.

This extreme example leads naturally to the concept of aggregate dis-
tinguisher. Let us assume now that we have enough memory to manage
ω cells. Informally, we can proceed as follows: we derive two probability
distributions D′0 and D′1 from D0 and D1, respectively, such that D′0 and D′1
share a support Y with ω = |Y| � |X | and such that the distinguishing
power loss is minimized; furthermore, we need to define an explicite surjec-
tion µ : X → Y which maps each element of X to an element of Y. The
natural idea consists then in aggregating elements with low biases to form
new elements of the derived distributions.

Let us assume now that we would like to aggregate two elements x, y ∈ X
with x 6= y to a single one named x||y ∈ Y. The loss of contribution to the
sum of Eq. (3.60) can be expressed as

ε2x
πx

+
ε2y
πy
− (εx + εy)

2

πx + πy
=

(πyεx − πxεy)2
πxπy(πx + πy)

.

This quantity must obviously be minimized in order to get the best pos-
sible aggregate in terms of ∆(D′0,D

′
1). These considerations naturally lead

to Alg. 3.10, which can be viewed as a derivation of an optimal encoding
procedure for Huffman codes [135] and whose optimality follows from the
preceeding considerations by induction.

Theorem 3.3.7. Let ω > 1 be a fixed integer; let D0 and D1 be two dis-
crete probability distributions sharing the same support X . Then, Alg. 3.10
minimizes

∆(D0,D1)−∆(D′0,D
′
1)

where D′0 and D′1 are the two probability distributions defined by S and µ.

Finally, we must note a quite annoying property of Alg. 3.10 which could
render it useless in certain situations: namely, for each “aggregate”, we must
store somewhere the corresponding part of the mapping µ. Unfortunately,
the memory required to store the mapping may be (in certain cases) as large
as the memory required to store the whole information about the probability
distribution under scrutiny. However, when applied to probability distribu-
tions having a small number of elements with a highly biased probability,
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1: Input: D0, D1, and ω.
2: Output: D′0, D′1 such that |D′0| = |D′1| = ω and ∆(D0,D1)−∆(D′0,D

′
1)

is minimal, and a surjective mapping µ : X → Y.
3: Let S = X .
4: while |S| > ω do

5: Let x, y ∈ S with x 6= y such that
(πyεx−πxεy)2

πxπy(πx+πy) is minimal.

6: Remove x and y from S, replace them with the element labelled x||y,
and assign it the probability πx + πy + εx + εy. Add furthermore
x 7→ x||y and y 7→ x||y to the mapping µ.

7: end while

Algorithm 3.10: Derivation of Optimal Aggregates

then aggregate distinguishers are definitely useful. We may even think about
situations where one can explicitely find sub-optimal distinguishers which
do not require much memory to store the mapping µ, but it remains an open
problem to us at the time of writing.

3.3.7 Sequential Distinguishers

1: Input: An oracle Ω implementing an unknown permutation U , a com-
plexity ν, acceptance functions accepti, 1 ≤ i ≤ ν, and rejection func-
tions rejecti, 1 ≤ i ≤ ν − 1.

2: Output: A decision bit.
3: i← 1
4: repeat
5: Select non-adaptively a message xi and get yi = U(xi).
6: if accept(y1, . . . , yi) = 1 then
7: Output “1” and stop.
8: else if reject(y1, . . . , yi) = 0 then
9: Output “0” and stop.

10: end if
11: i← i+ 1
12: until i = ν − 1
13: Select non-adaptively a message xν and get yν = U(xν).
14: if accept(y1, . . . , yν) = 1 then
15: Output “1”.
16: else
17: Output “0”.
18: end if

Algorithm 3.11: A ν-limited sequential non-adaptive distinguisher

If we look at Alg. 3.8, we can observe that, although the complexity ν
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is given in advance as input and is (implicitly) fixed, the effective number
of queries to the oracle is merely a random variable. In other words, δdiff

does not make use of all the information that it could exploit. In fact, we
can see the class of distinguishers submitting a random number of queries
to the oracle as a generalization of the class of distinguishers submitting a
fixed number of queries. We will call this generalization sequential distin-
guishers. In this part, we formalize the concepts of sequential non-adaptive
distinguisher (SNAD) and of ν-limited sequential non-adaptive distinguisher
(ν-limited SNAD). These kinds of distinguishers use sequential sampling pro-
cedures as their statistical core. The only example of an advanced attack
based on such a sequential procedure we are aware of is an attempt of Davies
and Murphy described in the appendix of [83] to decrease the complexity of
their non-surjetcive attack against DES.

In the Luby-Rackoff model, a non-adaptive adversary (which may be
modelized by an ν-limited adaptive distinguisher as described in Algorithm
3.4) is an infinitely powerful Turing machine which has access to an oracle
Ω. It aims at distinguishing a cipher C from the “ideal cipher” C∗ by query-
ing Ω, and with a limited number ν of inputs. The attacker must finally
take a decision; usually, one is interested in measuring the ability (i.e. the
advantage as defined in Eq. (3.42)) to distinguish C from C∗ for a given,
fixed amount ν of queries. Clearly, in this model, we are interested in maxi-
mizing the advantage under the constraint defined by the number of allowed
queries. In the real life, a cryptanalyst proceeds usually in an inverse man-
ner: given a fixed success probability (i.e. a fixed advantage), she may look
for minimizing the amount of queries to Ω, since such queries are typically
costly to obtain in practice. With this model in head, we can now define a
ν-limited sequential non-adaptive distinguisher (see Alg. 3.11), which actu-
ally turns out to be more efficient in terms of the average number of oracle
queries than Alg. 3.5 given a fixed advantage. In fact, such a distinguisher
implements an adaptive decision process. Namely, after having received the
i-th response from the oracle, the distinguisher compares the i responses
it has at disposal towards an acceptance set Ai (defined by the Boolean
function accepti in Alg. 3.5) and a rejection set Ri (defined by the Boolean
function rejecti), which depends on the number of queries and on the (fixed
in advance) advantage, and can then take three different decisions: either it
decides to output “0” and to stop, or to output “1” and to stop, or to query
one more question to the oracle and to repeat the decision process, until it
has queried d questions. Note that Ai ⊆ Bi and Ri ⊆ Bi must be disjoint
sets for all 1 ≤ i < ν and that Aν ∪ Aν = Bν, which means that the func-
tions accepti and rejecti must define consistent decisions. In statistics, this
process is known as a sequential decision procedure 28. We finally note that

28Historically, in very general terms, the concept of sequential hypothesis testing came
into existence simultaneously in the United States and Great Britain in response to de-
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Alg. 3.8 can be interpreted as a sequential differential distinguisher which
does not take explicitely into account intermediate decision functions, since
it always outputs “1” as soon as it observes a “differential event”.

Sequential Statistical Inference

We describe now formally the sequential decision procedure behind Alg. 3.11.
Let D be the set of possible decisions.

Definition 3.3.3 (Sequential decision procedure). Let X1, X2, . . . be
random variables observed sequentially. A sequential decision procedure
consists in:

1. a stopping rule σi which specifies whether a decision must be taken
without taking any further observation at step i. If at least one ob-
servation is taken, this rule specifies for every set of observed values
(x1, . . . , xi), with i ≥ 1, whether to stop sampling and take a decision
out of D or to take another observation xi+1.

2. a decision rule δi which specifies the decision to be taken. If i ≥ 1
observations have been taken, then one takes an action δν(x1, . . . , xν) ∈
D. Once a decision has been taken, the sampling process is stopped.

If we consider Alg. 3.11 at the light of Def. 3.3.3, D = {0, 1},

σi(x1, . . . , xi) =





Continue sampling if accepti(x1, . . . , xi) = 0 and
rejecti(x1, . . . , xi) = 1

Stop sampling if accepti(x1, . . . , xi) = 1 or
rejecti(x1, . . . , xi) = 0

and

δi(x1, . . . , xν) =

{
0 if reject(x1, . . . , xi) = 1
1 if accept(x1, . . . , xi) = 1

.

We are now interested in applying sequential decision procedures in the con-
text of binary hypothesis tests and of the Neyman-Pearson paradigm. We
have seen that Lem. 3.1.1 allows us to define precisely the shape of the op-
timal acceptance regions in the case of binary hypothesis tests (for a simple
hypothesis versus a simple alternative). Theoretically, if we would be able
to compute the exact joint probability distribution of the oracle’s responses
when it implements both ciphers, we would be able to compute the opti-
mal acceptance region A for any ν-limited distinguisher. Practically, one
should notice that it seems considerably easier to compute joint probabil-
ity distributions when the distinguisher is non-adaptive, since one can use

mands for more efficient sampling inspection procedures during World War II, and all
these developments were summarized by their principal architect, Wald, in [324]. We
refer to [299] for an excellent treatment of this subject.
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some (maybe heuristic) statistical independence assumptions. A sequential
likelihood-ratio test uses exactly the same process to define two sets of ac-
ceptance regions, denoted Ai and Ri, respectively. So, it is always possible
to define a sequential test when one has a classical test at disposal. In few
words, a sequential test has three alternatives once it has received a response
from the oracle: either it can conclude for one of both hypotheses, or it can
decide to query more samples. In its simpler definition, a sequential ratio
test has the possibility to query as many samples as it is needed to take a
decision, given a fixed error probability. The expected number of queries
required to reach one of the two possible decision turns out to be less than
it would need in order to make the same decision on the basis of a single
fixed-size sample set. Of course it may happen that the sequential procedure
will take more queries than the fixed-size one, but sequential sampling is a
definitely economical procedure. To fit into our framework, we may inter-
pret Alg. 3.11 as a truncated sequential test, i.e. one fixes an upper-bound
d on the number of queries; it is still clear that such a sequential procedure
cannot be worse than a fixed-size sampling procedure.

We state now some well-known definitions and results about sequential
hypothesis tests.

Definition 3.3.4 (Sequential Likelihood-Ratio Test). To test X ← D0

against X ← D1, define two constants τup > τdown > 0 depending on α and
β, and define the likelihood ratio

lr(x) =
fX1(x)

fX0(x)

The decision function at i-th step is

δopt =





1 (i.e accept X ← D1) if lr(x(i)) ≥ τup

0 (i.e. accept X ← D0) if lr(x(i)) ≤ τdown

∅ query another sample otherwise

(3.63)

When the observations are independent and identically distributed, then
sequential likelihood-ratio tests have a nice property, as stated by Th. 3.3.8.
We refer the reader to the book of Siegmund [299] for an excellent treatment
of sequential procedures and for the proof of the three following theorems.

Theorem 3.3.8. For testing a simple hypothesis against a simple alternative
with independent, identically distributed observations, a sequential probabil-
ity ratio test is optimal in the sense of minimizing the expected sample size
among all tests having no larger error probabilities.

The following results relate error probabilities α and β to τup and τdown, and
give an approximation of the expected number of samples.
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Theorem 3.3.9. Let us consider a sequential likelihood-ratio test with stop-
ping bounds τup and τdown, with τup > τdown and error probabilities 0 < α < 1
and 0 < β < 1, then

τdown ≥
β

1− α and τup ≤
1− β
α

The approximation τdown = β
1−α and τup = 1−β

α is known as “Wald’s approx-
imation”. The following theorem gives some credit to this approximation.

Theorem 3.3.10. Let us assume we select for given α, β ∈]0, 1[, where
α + β ≤ 1, the stopping bounds τ ′down = β

1−α and τ ′up = 1−β
α . Then it holds

that the sequential likelihood-ratio test with stopping bounds τ ′down and τ ′up

has error probabilities α′ and β′ where

α′ ≤ α

1− β , β′ ≤ β

1− α and α′ + β′ ≤ α+ β

Let us denote by N the random variable modelizing the number of samples
queried to Ω before Alg. 3.11 stops and outputs a decision bit. By taking
into account Wald’s approximation, we can easily compute approximations
of the expected number of queries:

EX0 [N ] ≈
α log

(
1−β
α

)
+ (1− α) log

(
β

1−α

)

EX0 [log(fX1(x))− log(fX0(x))]

where EXi
[.] denotes that the expectation is taken over Di and

EX1 [N ] ≈
(1− β) log

(
1−β
α

)
+ β log

(
β

1−α

)

EX1 [log(fX1(x))− log(fX0(x))]
.

Application of Sequential Distinguishers

We now illustrate the usefulness of sequential distinguishers in a cryptana-
lytic context using two examples. The first one consists in turning Matsui’s
First Algorithm Alg. 3.1 in a sequential procedure, while the second example
is the optimization of Canvel et al.timing attack against SSL [57].

A Toy-Example on DES In order to illustrate advantages of sequential
linear distinguishers, we have implemented a linear cryptanalysis of DES re-
duced to five rounds which uses a sequential distinguisher for deciding the
parity of the linear approximation, i.e. the parity of the sum of involved key
bits. Using a static test (i.e. using Matsui’s First Algorithm Alg. 3.1), we
need roughly 2800 known plaintext-ciphertext pairs in order to get a success
probability of 97 %. Using a sequential strategy and for the same success
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Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Pr[ Alg. 3.1 succ.] 0.9689 0.9687 0.9684 0.9686 0.9688

Pr[ Seq. dist. succ. ] 0.9686 0.9684 0.9683 0.9682 0.9684

Av. number of queries 1218.7 1218.7 1218.3 1219.1 1218.8

Figure 3.8: Sequential Linear Cryptanalysis of 5-Rounds DES.

probability, only 1218 samples were necessary on average. We describe now
both the static and the sequential decision rules.

Let Sν denote the number of times that Matsui’s best linear character-
istic [202] on 5-rounds DES evaluates to 0, where n is the number of known
plaintext-ciphertext pairs at disposal. This linear approximation holds with
probability 1

2 + 0.01907. According to Th. 3.2.6, the optimal static decision
rule is then defined to make Alg. 3.1 output the message “key parity = 0”
if and only if

Sν ≥
ν

2
,

and to output the message “key parity = 1” if and only if

Sν <
ν

2

With 2800 known pairs at disposal, the static rule is successful in about 97%
of the cases.

Let us now focus on defining a sequential rule to perform the same task.
For α = β = 0.025, Wald’s approximation gives τup = 48 and τdown = 1

48 .
Let furthermore ε = 0.01907. Then the sequential rule is then defined as
follows: in case

Sν ≤
ν

2
− log τup

2 log
(

1+2ε
1−2ε

) (3.64)

then output the message “key parity = 1” and stop; in case

Sν ≥
ν

2
+

log τdown

2 log
(

1−2ε
1+2ε

) (3.65)

then output the message “key parity = 0” and stop; in case where none
of the conditions of Eq. (3.64) and of Eq. (3.65) are statisfied, then query
another sample.

We repeated this experiment 1’000’000 times for 5 different keys and got
the results tabulated in Fig. 3.8. Basically, we need more than two times
less samples when using a sequential rule than when using a static rule.
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Optimization of the Timing Attack against SSL/TLS The SSL (Se-
cure Socket Layer) and its most modern version, named TLS (Transport
Layer Security), are certainly the most important protocols used to build
secure communications over the Internet (see [39, 90] for their formal spec-
ifications). It consists basically in first negotiating a security parameters
and a cipher suite, i.e. a set of cryptographic algorithms which the two com-
municating entities accept to use for the sequel of the communication, and
second, in exchanging secret keys. Once this setup step is performed suc-
cessfully, the communicating entities are able to exchange arbitrary messages
which will typically be authenticated using a Message Authentication Code
(MAC), and then encrypted using a block cipher. In case where the message
concatenated with the MAC is not long enough to fit in a multiple of the
block length of the cipher, then a padding operation is necessary which con-
sists in adding enough (fixed and known) supplementary bytes. Recently,
Vaudenay exhibited in [319] a side-channel attack based on the knowledge
whether or not the padding removal operation during the decryption was
successful or not. Provided this side information is available, this attack
allows an adversary to decrypt any block of data without knowledge of the
key, and is thus very powerful.

Unfortunately, such a side-channel is not (directly) available in the con-
text of SSL/TLS, since the error messages are encrypted. However, in order
to get access to this information anyway, Canvel et al. [57] observed that it is
possible to obtain it using a timing attack (first proposed by Kocher in [170]
against public-key cryptosystems). Namely, in order to check whether the
padding is correct, the server only needs to perform simple operations on the
very end of the ciphertext. If the padding is correct, the server further has to
perform time-expensive cryptographic operations on the whole length of the
ciphertext in order to check its authenticity (by re-computing a MAC), and
this typically requires more time. Thus, if an adversary is able to observe
this small time shift, it can finally get the needed information.

Provided the adversary is relatively close to the server (i.e. in terms
of network distance), she can measure the elapsed time several times, and
observe the sampling distribution in both cases. If the noise due to external
conditions keeps relatively low, we can expect the adversary be able to
distinguish the two distributions. Fig. 3.9 represents timing measurements
obtained by Canvel et al. on a LAN where a simple firewall was present
between the adversary and the server. They report to have modelled these
sampling distributions by two normal distributions whose parameters where
inferred from statistical measurements.

Motivated by our work, Canvel et al. report to have implemented both a
static and a sequential distinguisher, and they observed that the latter was
four to five time faster depending on the experimental conditions, rendering
the attack very practical.
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Figure 3.9: Timing measurement in Canvel et al. attack against SSL/TLS

3.3.8 Summary

In this section, we have shown that it is possible to interpret the Luby-
Rackoff model of security as a statistical hypothesis problem. This has
allowed us to derive the optimal shape of several types of distinguishers,
to bound tightly their best advantage, and to improve some existing results
under slightly weakened assumptions. Furthermore, we have presented some
results about the generalization of linear distinguishers, which are allowed
here to sample random sources of greater cardinality than 2. Then, we
have discussed how to improve the practicability of optimal distinguishers
in certain cases by applying the idea to derive more friendly probability
distribution using the aggregation of elements; finally, we have shown that
the concept of sequential sampling has interesting properties in the context
of cryptanalysis.

3.4 New Linear-Like Attacks against IDEA

In this section, we present a sequence of new attacks against reduced-round
versions of IDEA, up to 4 rounds (out of 8.5). These attacks are mainly based
on the Biryukov-Demirci relation proposed by Nakahara et al. [240]. Some
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of them, given a comparable computational complexity, reduce considerably
the amount of necessary chosen plaintexts, while other attacks, given a com-
parable amount of chosen plaintexts, decrease favorably the computational
complexity; none of our attacks need large amounts of memory. Further-
more, we show how to use some of these attacks in combination with other
known attacks, which allows in certain cases to gain more key bits with a
lesser complexity, or to avoid the use of both encryption and decryption ora-
cles. We refer the reader to §2.2.2 for a description of the IDEA block cipher
and for a discussion about the existing attacks against it. In the sequel, we
will make use of the notations defined in Fig. 2.10, page 22: the i-th input

word at round r is denoted x
(r)
i , the i-th output word is denoted y

(r)
i , and

the i-th word after a half-round (i.e. after a key addition layer) is denoted

c
(r)
i ; finally, the left and right input words of the MA-box at round r are

denoted α(r) and β(r), respectively, while the output words are denoted γ (r)

and δ(r).

3.4.1 The Biryukov-Demirci Relation

A crucial observation on which our attacks is based is that there exists a
linear-like expression holding with probability one on any number of rounds.
Nakahara et al. [240] name it Biryukov-Demirci relation. It is actually a
combination of two facts, one of these being the following observation by
Demirci [84].

Lemma 3.4.1 (Demirci [84]). For any number r of round(s) in the block
cipher IDEA,

lsb
(
γ(r) ⊕ δ(r)

)
= lsb

(
α(r) � k(r)

5

)
(3.66)

where lsb(a) denotes the least significant (rightmost) bit of a.

Using this theorem, one can easily set up a distinguisher using a few known
triplets (α(r), γ(r), δ(r)) which works as follows: for each possible value of

k
(r)
5 , check whether Eq. (3.66) hold for a certain number of known triplets;

this allows to sieve wrong values of k
(r)
5 from the right one. Actually, one

gets two candidates for k
(r)
5 , as observed by Demirci: if k

(r)
5 /∈ {0, 1}, this

distinguisher eliminates all keys except the correct one and a “conjugate”

216 + 1− k(r)
5 . Otherwise, it eliminates all keys except 0 and 1.

The second (unpublished) observation29 states that the two middle words
in a block of data are only combined, either with subkeys or with internal
cipher data, via group operations (namely ⊕ and �) which are GF(2)-linear
when considering their least significant (rightmost) bit; this fact is valid
across the full cipher (and is actually independent of the number of rounds).

29According to [240], this observation is due to Biryukov.



— 129 —

Combining this observation and Lem. 3.4.1, one easily obtain the Biryukov-
Demirci relation.

Theorem 3.4.1 (Biryukov-Demirci relation). For any number r of
round(s) in the block cipher IDEA, the following expression is true with prob-
ability one:

lsb

(
n⊕

i=1

(
γ(i) ⊕ δ(i)

)
⊕ x(1)

2 ⊕ x
(1)
3 ⊕ y

(n+1)
2 ⊕ y(n+1)

3

)
=

lsb




n⊕

j=1

(
k

(j)
2 ⊕ k

(j)
3

)



Note that Th. 3.4.1 can easily be extended when a final half-round (key-
addition layer) is present by adding the two relevant key bits.

3.4.2 Retrieving All Key Bits for 1.5 Rounds

The simplest attack described in [240] is built on top of the following ex-
pression holding with probability one; it is a straightforward application of
Th. 3.4.1 to 1.5-rounds IDEA.

lsb
(
x

(1)
2 ⊕ x

(1)
3 ⊕ c

(2)
2 ⊕ c

(2)
3 ⊕ k

(1)
2 ⊕ k

(1)
3 ⊕ k

(2)
2 ⊕ k

(2)
3 ⊕

k
(1)
5 �

((
x

(1)
1 � k

(1)
1

)
⊕
(
x

(1)
3 � k

(1)
3

)))
= 0 (3.67)

By taking into account the key-schedule algorithm and guessing key bits
numbered (see Fig. 2.11) 0-15, 32-47, 64-79, which represent 48 unknown key

bits, one can recover these right key bits and lsb
(
k

(1)
2 ⊕ k

(2)
2

)
with probabil-

ity larger than 0.99 in roughly 3· 1230 ·248 ≈ 248.26 1.5-rounds IDEA evaluations
if 55 known plaintext-ciphertext pairs are available using Alg. 3.12. The
complexity of this attack can be evaluated as follows: for each key candi-
date, one needs to evaluate Eq. (3.68) at least two times, three times with
probability 1

4 , four times with probability 1
8 , and so on, which results in an

average of three evaluations of Eq. (3.68); as in [240], we assume furthermore
that a � operation is equivalent to three ⊕ (or three �) operations: thus,
one evaluation of Eq. (3.68) costs 12 simple operations while a full evalua-
tion of 1.5-round IDEA costs 30 simple operations. Note that we may have

adopted the strategy of [240], which consists in guessing lsb
(
k

(1)
2 ⊕ k

(2)
2

)

as well and evaluating Eq. (3.67). In this case, one would need one pair
of known plaintext-ciphertext more to ensure the same success probability,
and the complexity would have been equal to 2 · 14

30 · 249 ≈ 248.90, which is
slightly worse.
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1: Input: An oracle Ω implementing encryption by 1.5-rounds IDEA under
a fixed, unknown key.

2: Query the ciphertexts corresponding to 55 different, uniformly dis-
tributed plaintexts Pi to Ω.

3: for all possible subkey candidates (k
(1)
1 , k

(1)
3 , k

(1)
5 ) do

4: Check whether the expression

lsb
(
x

(1)
2 ⊕ x

(1)
3 ⊕ c

(2)
2 ⊕ c

(2)
3 ⊕

k
(1)
5 �

((
x

(1)
1 � k

(1)
1

)
⊕
(
x

(1)
3 � k

(1)
3

)))
(3.68)

gives the same bit for the two first pairs. If yes, take sequentially
other pairs as long as Eq. (3.68) evaluates to a constant. If it holds
for all 55 pairs, output “Key candidate”.

5: end for

Algorithm 3.12: Attack breaking 1.5-round IDEA

We observe that it is actually possible to apply a common trick30 to
the Biryukov-Demirci relation and thus extend Nakahara et al. attack: we
can apply the relation in two directions, namely in the encryption or in
the decryption direction. When applied to the decryption direction, the
distinguisher Eq. (3.67) becomes

lsb
(
x

(1)
2 ⊕ x

(1)
3 ⊕ c

(2)
2 ⊕ c

(2)
3 ⊕ k

(1)
2 ⊕ k

(1)
3 ⊕ k

(2)
2 ⊕ k

(2)
3 ⊕

k
(1)
5 �

((
c
(2)
1 � k

(2)
1

)
⊕
(
c
(2)
2 � k

(2)
2

)))
= 0 (3.69)

Although it would not be more interesting to use Eq. (3.69) as single dis-
tinguisher (since one should the same number of unknown key bits), one
can use it after Eq. (3.67) to recover all key bits using roughly the same
amount of computational effort. More precisely, once the key bits 0-15,

32-47, 64-79 are known, which actually fix k
(1)
1 and k

(1)
5 , one can recover

k
(2)
1 and k

(2)
2 (key bits numbered 96-127) in a 3 · 12

30 · 232 ≈ 232.26 effort, de-
rive the key bit 31, and search exhaustively for the remaining 47 unknown
key bits. The overall complexity of this attack is approximately equal to
248.26 + 247 + 232.26 ≈ 248.76 1.5-round IDEA evaluations.

30This trick was proposed for the first time, to the best of our knowledge, by Matsui [203]
in the linear cryptanalysis of DES.
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3.4.3 A New Chosen-Plaintext Attack Breaking 2 Rounds

Let us consider the relation Eq. (3.67) on 2 rounds, and let us fix x
(1)
1 and

x
(1)
3 to arbitrary constants31. Our attack proceeds as follows and assumes

that the adversary is able to encrypt about 62 chosen plaintexts: as first

step, encrypt 23 chosen plaintexts with fixed x
(1)
1 and x

(1)
3 , and guess k

(2)
5 .

In a second step, guess k
(2)
6 and test Eq. (3.67) on the partially decrypted

ciphertext, and determine these unknown key bits with help of Eq. (3.67)
by eliminating the candidates which do not render this expression constant,
since the expression

lsb
(
k

(1)
5 �

((
x

(1)
1 � k

(1)
1

)
⊕
(
x

(1)
3 � k

(1)
3

)))

provides an unknown, but constant bit to the cryptanalyst. This process
gives us 4 candidates for the key bits 57-88 within a complexity of less than
220 2-rounds IDEA evaluations.

Once this process is achieved, one can use the attacks described in §3.4.2
to derive key bits 0-15 and 32-47 in a 233 effort and key bits 96-127 in another
233 effort with 39 additional chosen-plaintext. Hence, this attacks recovers
all key bits (the 31 remaining ones with help of an exhaustive search) in a
computational complexity approximately equal to 234 2-rounds IDEA evalua-
tions. Thus, this attack compares quite favorably with Demirci’s square-like
attack [84] which requires roughly the same order of chosen-plaintexts and
a 264 computational effort to recover the whole key.

If a decryption oracle is available, instead of an encryption one, we can
still mount a chosen-ciphertext attack based on the same properties. It

would work as follows: fix y
(2)
1 and y

(2)
3 to an arbitrary constant, and guess

k
(1)
1 , k

(1)
3 , and k

(1)
5 (which represent 48 unknown key bits numbered 0-15, 32-

47, and 64-79). Once these 48 bits recovered, after a 248 process (provided
55 chosen plaintexts are available), one can recover 16 more bits (i.e. the

still unknown bits of k
(2)
5 and k

(2)
6 in a second step, and 32 more (numbered

96-127 and corresponding to subkeys k
(2)
1 and k

(2)
2 ) in a third step; finally,

the remaining ones can be found with help of an exhaustive search.

31A similar technique was used by Knudsen and Mathiassen [166] to speed up by a small
constant a linear cryptanalysis of DES.
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3.4.4 A New Chosen-Plaintext Attack Breaking 2.5, 3, and
3.5 Rounds

If we apply the Demirci-Biryukov relation to 2.5-rounds IDEA, then one get
the following expression:

lsb

(
x

(1)
2 ⊕ x

(1)
3 ⊕ c

(3)
2 ⊕ c

(3)
3 ⊕

3⊕

i=1

(
k

(i)
2 ⊕ k

(i)
3

))
⊕

lsb
(
k

(1)
5 �

((
x

(1)
1 � k

(1)
1

)
⊕
(
x

(1)
3 � k

(1)
3

)))
⊕ (3.70)

lsb
(
k

(2)
5 �

((
c
(3)
1 � k1

(3)
)
⊕
(
c
(3)
2 � k

(3)
2

)))
= 0 (3.71)

where k1
(3)

denotes the inverse of k
(3)
1 relatively to the group operation

�. If we use the same trick than for 2 rounds and fix x
(1)
1 and x

(1)
3 , an

adversary can recover k
(2)
5 , k1

(3)
and k

(3)
2 (key bits 57-72 and 89-120) in

a 248 effort if 55 chosen-plaintexts are available (the success probability is

then larger than 0.99). Once achieved, one can recover 39 key bits (k
(1)
1 ,

k
(3)
1 and the remaining unknown bits of k

(5)
1 ) numbered 0-15, 32-47 and 73-

79 with the same distinguisher where Eq. (3.71) is fixed and known. For
this, we need 46 additional known plaintexts. The remaining 41 key bits
can be recovered with an exhaustive search within negligible computational
complexity. Note that in this case, the Demirci-Biryukov relation applied
on the decryption operation results in the same distinguisher. To the best
of our knowledge, it is the fastest attack on 2.5-rounds IDEA not involving
any weak-key assumption.

If a decryption oracle is available, instead of an encryption one, it is

possible to mount a similar (chosen-ciphertext) attack: fix c
(2)
1 and c

(2)
2 to

an arbitrary constant, and guess k
(1)
1 , k

(1)
3 , and k

(1)
5 . In a second step, guess

the remaining unknown bits of k
(3)
1 , k

(3)
2 , and k

(2)
5 ; one can finalize the attack

using an exhaustive search.
We can extend to 3 rounds the attack previously described in a straight-

forward way: actually, if we fix x
(1)
1 and x

(1)
3 and guess k

(2)
5 , k1

(3)
, k

(3)
2 , k

(3)
5

and k
(3)
6 (which represent key bits numbered 50-81 and 89-120), one can re-

cover 64 key bits in a 264 process if 71 chosen-plaintext are available. Then,

once k
(2)
5 , k1

(3)
, k

(3)
2 , k

(3)
5 and k

(3)
6 are known, one can apply the attack on

2.5 rounds to derive 49 more bits (numbered 0-15, 32-47, 73-79 and 127)
with negligible complexity and the remaining 15 bits can finally be searched
exhaustively.

The chosen-ciphertext version of this attack is clearly less effective, since

one has to guess at least 96 unknown key bits (corresponding to subkeys k
(3)
5 ,

k
(3)
6 , k

(3)
1 , k

(3)
2 , k

(2)
5 , k

(1)
1 , k

(1)
3 , and k

(1)
5 ; the unknown key bits are numbered

0-15, 32-47, 50-81,and 89-120).
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For attacking 3.5 rounds, one uses a new time the distinguisher described

above, one fixes x
(1)
1 and x

(1)
3 and one guesses furthermore all the keys of

the last half-round; the subkeys under consideration are then k
(2)
5 , k

(3)
1 , k

(3)
2 ,

k
(3)
5 , k

(3)
6 , k

(4)
1 , k

(4)
2 , k

(4)
3 and k

(4)
4 (i.e. all the key bits but the interval 18-49,

representing 96 key bits). The computational effort is approximately equal
to 297 if 103 chosen-plaintexts are available.

The same attack can be adapted for a decryption oracle, however re-
sulting in a higher complexity: if 119 chosen-ciphertext are available to an

attacker (where c
(4)
1 and c

(4)
3 are fixed to an arbitrary constant), then one

can recover 112 key bits numbered 0-111 (corresponding to subkeys k
(2)
5 ,

k
(2)
1 , k

(2)
3 , k

(1)
5 , k

(1)
6 , k

(1)
1 , k

(1)
2 , k

(1)
3 , and k

(1)
4 ).

3.4.5 Time-Memory Tradeoffs

We show now that it is possible under certain circumstances to trade between
and time complexities in the attacks of Nakahara et al. [240].

Let us consider 2.5-rounds IDEA, and let us assume that we make use

of 55 known plaintext-ciphertext pairs. For all possible values of k
(1)
1 , k

(3)
1 ,

and k
(1)
5 (i.e. key bits numbered 0-15, 32-47, and 64-79), we can compute a

guess for the value of the following expression.

k
(1)
2 ⊕ k

(2)
2 ⊕ k

(2)
3 ⊕ k

(3)
2 ⊕ k

(3)
3︸ ︷︷ ︸

constant

⊕ lsb
(
δ(2) ⊕ γ(2)

)
(3.72)

The sub-sum depending only of the key bits is unknown but constant. Let
us store all these guesses in a large hash table made of 248 55-bit words,

As second step of the attack, one guesses the key bits k
(2)
5 , k

(3)
1 , and k

(3)
2

(i.e. bits numbered 57-72 and 89-120): for all these guesses, and for the 55
ciphertexts, we can compute (by partially decrypting the ciphertexts) the
value of lsb(δ(2)⊕γ(2)) and checking whether this value (or its complement) is
stored in the table or not. With high probability, the right subkey candidate
will be determined by one of the few expected matches. This attack hence
requires two times 55 · 248 ≈ 254 partial encryptions/decryptions, and 248

memory cells, while the remaining 41 unknown bits can be recovered with
an exhaustive search within negligible complexity.

The attack can be extended to more rounds in the following way. Using
the same approach than for the 2.5-round case, one compute a hash table

containing, for all possible values of k
(1)
1 , k

(3)
1 , and k

(1)
5 , a guess for

k
(1)
2 ⊕ k

(2)
2 ⊕ k

(2)
3 ⊕ k

(3)
2 ⊕ k

(3)
3︸ ︷︷ ︸

constant

⊕ lsb
(
δ(2) ⊕ γ(2)

)
⊕ lsb

(
δ(3) ⊕ γ(3)

)

for 71 known plaintext-ciphertext pairs. In a second step, by guessing k
(2)
5 ,

k
(3)
1 , k

(3)
2 , k

(3)
5 , and k

(3)
5 (i.e. key bits numbered 50-81 and 89-120), one can
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recover a total of 96 key bits, the remaining 32 ones with help of an ex-
haustive search, in an approximate overall computational complexity of 270

operations.

Finally, this attack can be extended to 3.5 rounds if we guess the addi-

tional unknown key bits of k
(4)
1 , k

(4)
2 , k

(4)
3 , and k

(4)
4 (i.e. bits numbered 0-17

and 121-127). One needs in this case 103 known plaintext-ciphertext pairs,
248 103-bit words of memory, and a computational complexity of about 2103

operations.

The same attack strategy on 4 rounds would imply guessing all the key
bits, thus it is less efficient than an exhaustive key search.

3.4.6 Combination with other Attacks

Interestingly, we note that our attacks can be used in parallel with other
attacks to gain more key bits. For instance, the attack on 3-rounds IDEA of

Demirci et al. described in [85] is able to recover the values of k
(1)
2 , k

(1)
4 ,

k
(2)
5 , and k

(3)
5 (which represents 41 key bits) in a 242 effort (after a 264

precomputation). Then, to derive 32 other key bits, the authors assume
that a decryption oracle is available. If it is not the case, one can still
relax this condition by applying the attack described in §3.4.4 and recover
41 additional key bits, namely those numbered 73-81 and 89-120, within
negligible computational complexity. Similar considerations apply if only a
decryption oracle is available.

Another interesting combination of known attacks and the ones described
in this paper is the following: in [84], Demirci describes a square-like dis-
tinguisher which, with help of two sets of 232 chosen-plaintexts, allows to

recover k
(3)
5 in about 249 operations. If, in a second step, we plug the ob-

tained value of k
(3)
5 into the attack described in §3.4.4, we can derive 48

other key bits numbered 66-81, and 89-120 in a 249 computational effort in
a second step, and finally the remaining bits within negligible time. This
defines an attack which derives all key bits within 250 operations if 233

chosen-plaintexts are available. This represents a complexity decrease by
a factor of about 232. Unfortunately, the same strategy does only improve
marginally the attack against 3.5 (or more rounds): one can replace the final
exhaustive search of the remaining 80-bit keys by our more efficient attack.

3.4.7 A New Square-Like Distinguisher

As observed for the first time by Nakahara et al. [238] and later by Demirci
[84], square-like distinguishers can be used with success to attack IDEA. We
present now such a distinguisher which is somewhat simpler to use than the
ones available in the literature.
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Lemma 3.4.2 (Square-Like Distinguisher on 2.5-Round IDEA). Let

216 different inputs of 2.5-round IDEA be defined as follows: x
(1)
1 , x

(1)
2 , and

x
(1)
3 are fixed to arbitrary constants, and X

(1)
4 takes all possible values. Then

the XOR of the 216 values of the equation

x
(1)
2 ⊕ x

(1)
3 ⊕ c

(1)
2 ⊕ c

(1)
3 ⊕

k
(1)
2 ⊕ k

(1)
3 ⊕ k

(2)
2 ⊕ k

(2)
3 ⊕ k

(3)
2 ⊕ k

(3)
3 ⊕

lsb
(
γ(1) ⊕ δ(1)

)
⊕ lsb

(
γ(2) ⊕ δ(2)

)
(3.73)

is equal to 0 with probability one.

We can then use this distinguisher to attack reduced-round versions of IDEA.
To attack 3 rounds, encrypt 39 different structures of 216 chosen plaintexts

according to Lem. 3.4.2. Then, for all possible values of k
(3)
5 and k

(3)
6 (i.e. bits

numbered 50-81), partially decrypt the ciphertext for the 39 structures using
the same iterative strategy as in Alg. 3.12. This attack recovers 32 key bits,
and with a few more chosen plaintexts, we can apply the attack on 2.5-rounds
described in §3.4.4 to recover all the keys bits. In summary, this attack
requires less than 222 chosen-plaintexts and a computational complexity of
approximately 250 operations.

On 3.5 rounds, we can attack the round keys k
(3)
5 , k

(4)
1 , and k

(4)
2 (i.e. 48

key bits numbered 50-65 and 82-113) in a similar fashion. In this case,
we need 55 structures of 216 chosen plaintexts (i.e. less than 222 chosen
plaintexts as well), and a computational complexity of approximately 3 ·
216 · 248 ≈ 266 operations.

Finally, we can attack 4 rounds using the same strategy by guessing

further key bits, i.e. those of k
(4)
5 and of k

(4)
6 , which represents 80 unknown

bits in total. Hence, we need about 87 structures of 216 chosen plaintexts,
which is less than 223 chosen plaintexts, and a computational cost of about
3 · 216 · 280 ≈ 298 operations.

3.4.8 Summary

In this section, we have used the same kind of properties derived by Demirci
[84] and Nakahara et al. [239] to derive a sequence of simple, yet efficient
attacks against reduced-round versions of IDEA; the attacks against 2 and
2.5 rounds are the best known ones not involving any weak-key assumption,
to the best of our knowledge. Some of them, given the same order of compu-
tational complexity, reduce the amount of necessary chosen plaintexts, while
other attacks, given a comparable amount of chosen texts, decrease favor-
ably the computational complexity; additionally, some tradeoffs between
time and memory are presented, which lead to far less complex attacks us-
ing only known plaintext-ciphertext pairs. Furthermore, we showed how to
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use some of these attacks in combination with other known attacks, which
allows sometimes to gain more key bits with a lesser complexity, or to avoid
the use of both encryption and decryption oracles. The more important
attacks against this block cipher are tabulated in Fig. 3.10 (which is an
updated version of Fig. 2.12), as well as their respective complexities.
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Rounds Data Time Attack type Ref. Note

2 210 CP 242 differential [219]

2 62 CP 234 linear-like §3.4.3
2 23 CP 264 square-like [84]

2.5 210 CP 2106 differential [219] Memory: 296

2.5 210 CP 232 differential [77] For one key out of 277

2.5 218 CP 258 square [238]

2.5 232 CP 259 square [238]

2.5 248 CP 279 square [238]

2.5 2 CP 237 square [238] Under 216 rel. keys

2.5 55 CP 281 square-like [84]

2.5 101 CP 248 linear-like §3.4.4
2.5 97 KP 290 linear-like [239]

2.5 55 KP 254 linear-like §3.4.5 Memory: 248

3 229 CP 244 differential-linear [45]

3 71 CP 271 square-like [84]

3 71 CP 264 linear-like §3.4.4
3 233 CP 264 collision [85] Memory: 264

3 233 CP 250 linear-like + [84] §3.4.6
3 222 CP 250 square-like §3.4.7
3 71 KP 270 linear-like §3.4.5 Memory: 248

3.5 256 CP 267 truncated diff. [45]

3.5 238.5 CP 253 impossible diff. [27] Memory: 248

3.5 234 CP 282 square-like [84]

3.5 224 CP 273 collision [85]

3.5 222 CP 266 square-like §3.4.7
3.5 103 CP 2103 square-like [84]

3.5 103 CP 297 linear-like §3.4.4
3.5 119 KP 2112 linear-like [239]

3.5 103 KP 297 linear-like §3.4.5 Memory: 248

4 237 CP 270 impossible diff. [27] Memory: 248

4 234 CP 2114 square-like [84]

4 224 CP 289 collision [85] Memory: 264

4 223 CP 298 square-like §3.4.7
4 121 KP 2114 linear-like [239]

4.5 264 CP 2112 impossible diff. [27]

4.5 224 CP 2121 collision [85] Memory: 264

5 224 CP 2126 collision [85] Memory: 264

Figure 3.10: Attacks against IDEA(updated)
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Chapter 4
Design of Block Ciphers

This chapter is devoted to the design of secure and efficient block ciphers.
We first review generalities about the task of designing a block cipher. Then,
we address specifically the problem of designing fast diffusive components
in §4.2. Finally, we present in §4.3 the description of a new family of block
ciphers, named FOX, and we discuss thoroughly its characteristics both in
terms of security and of performance.

4.1 General Considerations

In his seminal paper [295], Shannon noticed that the design of a block cipher
should include two fundamental principles: confusion and diffusion. The
principle of confusion was interpreted by Lai [179] in his PhD thesis as:

“The dependence of the key on the plaintext and ciphertext should
be so complex that it is useless for cryptanalysis.”

while the principle of diffusion is defined as:

“For virtually every key, the encryption function should be such
that there is no statistical dependence between simple structures
in the plaintext and simple structures in the ciphertext and that
there is no simple relation between different encryption func-
tions.”

In this part, we discuss several strategies and issues about the design of
modern, fast and secure block ciphers, namely how to guarantee these two
properties into a block cipher. We treat successively common skeletons of
block ciphers in §4.1.1, non-linear components in §4.1.2, diffusive compo-
nents in §4.1.3, and key-schedule algorithms in §4.1.4. Finally, we briefly
describe in §4.1.6 typical target platforms and the constraints they induce
during the design of a block cipher.

139
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4.1.1 Skeletons

Most of the known algorithms share the same kind of high-level structure,
or skeleton. We discuss now the most common skeletons encountered in
the litterature and used in the practice. Finally, we discuss their respective
advantages and drawbacks.

Feistel Schemes

The most widely used block cipher scheme is clearly the Feistel scheme
[102] (see Def. 2.2.1 and Fig. 2.3 for a formal definition thereof and for an
illustration, respectively). This popularity comes certainly from the fact
that it is fairly easy to use any random round function f in order to make
a permutation. In addition, encryption and decryption operations hardly
need separate implementations. Another reason why the Feistel scheme is
so popular is that it has been widely studied in a theoretical point of view.
For instance, Luby and Rackoff proved in [191] that a Feistel network can
generate a pseudorandom permutation if the underlying round functions are
pseudorandom and if we use at least three rounds (see also the description
of the Luby-Rackoff model of security in §2.4.2, page 53, which contains an
extensive list of bibliographical references to the subject as well). A large
number of block ciphers are Feistel ciphers: DES, the FEAL family, LOKI,
Khufru, Khafre, Blowfish, Misty1, E2 and DFC, to name a few. Twofish uses
a slightly modified Feistel structure, involving data-independent rotations
in the branches, while Camellia is a Feistel cipher with an additional mixing
layer every 6 rounds.

Generalized Feistel Schemes

In a common (balanced) Feistel scheme, half the bits operate on the other
half. It is natural to consider the unbalanced case, where the f-function
takes as input a different number of bits than its output. This approach
has been proposed by Blaze and Schneier, in the design of MacGuffin, and
then generalized in [285]. Fig. 4.1 illustrates the example of an unbalanced
Feistel scheme with 4 branches. Three quarters of the data width form the
f-function input in each round and the last quarter is combined with the
f-function output. The high-level structures of CAST and Mars are a kind
of unbalanced Feistel schemes.

It is furthermore possible to generalize the Feistel construction: for in-
stance, we may consider a scheme where the f-function is not the same one
(i.e. it is not only modulated by the subkeys) in each round. Since the inter-
nal properties of such a heterogenous scheme change from round to round,
it may be much more complicated to find any kind of cryptanalytic prop-
erty that propagates well through all rounds. However, implementing such
a kind of schemes is costly and analyzing them is much more difficult.
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Figure 4.1: Generalized unbalanced Feistel network with 4 branches
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Figure 4.2: Lai-Massey Scheme

Lai-Massey Schemes

A far less-used skeleton is the so-called Lai-Massey scheme, which was in-
troduced with PES and its successor IDEA. It is based on a group law and,
like the Feistel scheme, it allows to build a permutation from any function
(see Fig. 4.2). The two halves of the input are combined with help of the
inverse group law (denoted 	 in Fig. 4.2), fed into the round function, and
the corresponding output is combined with the two branches with help of
the group law (denoted ⊕ in Fig. 4.2). We note however that without any
modification, the Lai-Massey scheme is insecure, since there exists a differ-
ential characteristic which holds with probability one (see Eq. (4.5), page
197). This annoying property can however be avoided by plugging an or-
thormorphism, as we will discuss it in §4.3.4. Besides the ciphers PES, IDEA,
and the MESH family, FOX, which will be described in §4.3, is also built on
top of a (slightly modified) Lai-Massey scheme.
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Substitution-Permutation Networks

The so-called substitution-permutation network (SPN) (see Fig. 4.3) applies
the principles of confusion and diffusion in a rather straightforward way by
alternating layers of substitution and layers of permutation. Although one
can view Feistel networks and related schemes as SPNs, we won’t refer to
them with this notation, because each layer does not apply on the whole
block size. There is usually two methods for combining the key material:
either subkeys are XORed before the entry in a substitution layer, or the
subkeys determine (key-dependent) S-boxes.

While SPNs’ security has been extensively studied (from an information-
theoretic point of view [300], towards differential and linear cryptanaly-
sis [130–132], for instance), there is rather few available theoretical work on
the structural security properties of SPNs. Recently, Biham published [22]
a dedicated attack against an ASASA structure, i.e. against a 5-layers SPN
where the permutations are affine transformations. Later, Biryukov and
Shamir have presented [36] the first structural attack against a SASAS struc-
ture, with a surprisingly low complexity. Another work in the same vein is
Moriai and Vaudenay’s discussion of SPNs at the light of the decorrela-
tion theory [231]. Several modern ciphers are SPNs. For instance, one can
mention Shark, Square, Rijndael, or Serpent.

Other Constructions

Some modern ciphers are not built on top of one of the typical structures
described below. For instance, RC5 has a kind of Feistel structure, but
where the f-function operations, the key mixing and the combination of
both branches are mixed. This structure has been extended to a kind of
generalized Feistel network with four branches in RC6.

4.1.2 Non-Linear Components

The strength of most of block ciphers (more specifically their resistance
against linear and differential cryptanalysis) is inevitably tied to the strength
of their S-boxes, which is usually their sole non-linear component. In this
part, we discuss the strength criteria of non-linear constructions together
with strong S-boxes construction methods.

An n-bit to m-bit S-box defines simply a substitution, i.e. to each n-
bit input is mapped a corresponding m-bit output value (which has not
necessarily the same length than the input). S-boxes are responsible for
bringing confusion in the data processing. This means that they should
hide any mathematical relationship between the plaintext, the ciphertext
and the key.

An S-box can be described by a lookup table of 2n elements of m bits.
Hence, for implementation reasons, it is desirable to keep the table as small
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as possible or to give a simple algorithmic description. For instance, in dedi-
cated hardware implementations, S-boxes can be implemented as a straight-
forward lookup table stored in ROM. Since the area of such table grows
exponentially with the length of the input, small boxes are desirable from
this point of view. In software, an S-box is usually implemented as an array
of constants that is indexed by the n-bit input. In general, S-boxes have a
small portability; as a matter of fact, there is no benefit in using processors
with a register length larger than the S-box input length. In certain cases,
if the underlying processor has a register size which is several times as large
as a S-box input, it is however possible to handle several S-boxes at the
same time. Another way to implement S-boxes in an efficient way, given
that the input size is not too large, is the bitslice trick [21] (used on our fast
implementation of DES, see §3.2.5): one expresses each S-box’s output bit
as a Boolean expression of the input bits. This approach has been applied
in the design of Serpent. However, finding optimal Boolean expressions of a
S-box is not a trivial task [178] in the general case, and the results can be
quite different on various architectures, provided the number and the size of
logical operations at disposal, or the instruction cache size [216].

Non-Linearity Criteria

Obviously, there exist weak and strong S-boxes: to give a trivial illustration
thereof, one can simply take the trivial substitution which consists in replac-
ing each input by itself. Thus it seems natural to define strength criteria of
S-boxes. We must however note that a weakness (or strength) measure is
always related to a given attack, thus, new attacks often imply new strength
criteria.

Perfect Nonlinear Functions The importance of measuring the non-
linearity (see Def. 4.1.1) of cryptographic functions was first noticed by
Pieprzyk and Finkelstein [266].

Definition 4.1.1 (Non-linearity of a Boolean function). Let f and g
be functions from GF(2)n to GF (2). Let

δH(f, g) =
∑

x

1f(x)6=g(x)

be the Hamming distance between f and g. Let ϕ1, . . . , ϕ2n+1, . . . , ϕ2n+1 be
all affine functions ϕi : GF(2)n → GF (2). Then

nf = min
i=1,...,2n+1

δH(f, ϕi)

is called the non-linearity of f.
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In their seminal paper [220] initiating the study of Boolean functions in a
cryptographic context, Meier and Staffelbach consider the distance to linear
and affine functions as a non-linearity criterion. They define perfect non-
linear functions (see Def. 4.1.2); furthermore, it turns out that perfect non-
linear functions correspond to certain functions known in combinatorics, the
so-called bent functions.

Definition 4.1.2 (Perfect non-linear Boolean functions). A Boolean
function f : GF (2n) → GF (2) is called perfect non-linear if for every non-
zero vector a ∈ GF(2)n the values f(x⊕ a) = f(x) are equal for exactly half
of the arguments x ∈ GF(2)n.

An equivalent way to define perfect non-linear Boolean functions consists in
saying that they have a non-linearity degree1 equal to 2n−1 + 2

n
2
−1.

Strict Avalanche Criterion Based on earlier ideas of Feistel [102] and
of Kam and Davida [154], Webster and Tavares have proposed the strict
avalanche criterion (SAC) in [326] (see Def. 4.1.3). This concept is based on
the concept of completeness of a cryptographic function and on the concept
of avalanche effect. A cryptographic function is said to be complete if each
ciphertext bit depends on all the plaintext bits, while a function is said
to exhibit the avalanche effect if an average of one half of the output bits
change whenever a single input bit is complemented.

Definition 4.1.3 (Strict avalanche criterion). Let x and x′ be two n-
bit binary vectors such that x and x′ differ only in bit i, 1 ≤ i ≤ n. Let
v = y ⊕ y′, where y = f(x), y′ = f(x′) and f(.) is the Boolean function
under consideration. f is said to meet the strict avalanche criterion if the
probability that each bit of v is equal to 1 is equal to 1

2 over the set of all
vectors x and x′ for all i.

This notion has then been generalized and linked to the Walsh-transform
by Forré [107] and functions satisfying higher order SAC criteria have been
studied, for instance, by Cusick [74].

Links between Nonlinearity Criteria The links between non-linearity
criteria have been the subject of several efforts after the discovery of the
linear and differential cryptanalysis (see §2.3 for a description of these at-
tacks). In order to study linear and differential properties of functions, use-
ful measures are the linear (see Def. 2.3.9) and differential probabilities (see
Def. 2.3.2). We summarize in the following list known results on Boolean
functions and links between non-linearity criteria. We refer to f as a function
mapping {0, 1}p to {0, 1}q .

1Note that perfect non-linear Boolean functions exist only for n even.
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• DPf
max ≥ 2−q. The equality holds for perfect non-linear functions.

• DPf
max ≥ 21−p. The equality holds for almost perfect non-linear func-

tions [252].

• LPf
max ≥ 2−p. The equality holds for bent functions [280].

• LPf
max ≥ 21−p

(
1 + (2q−p−1)(2p−1−1)

2q−1

)
. The equality holds for almost-

bent functions [58].

• Bent functions and perfect non-linear functions are equivalent [220]
and exist if and only if p ≥ 2q and p is even [249].

• Almost-bent functions exist if and only if p = q and p is odd and are
almost-perfect non-linear functions (the reciprocal is not true) [58].

• Almost-perfect non-linearity is only possible if (p, q) = (2, 1) or q ≥ p.

S-Boxes Construction Methods

Since S-boxes play such a key role in the security of block ciphers, their selec-
tion method is a very important task during the design of a block cipher. It is
possible to identify three different strategies: random choice, random choice
followed by filtering, and algebraic constructions. The two first strategies
are heuristic methods, while the last one is clearly more mathematical.

Random Choice A possible strategy in selecting S-boxes is to choose
them completely at random. While this approach can be insecure for small
S-boxes (for instance, Biham and Shamir noticed [33] that replacing S-boxes
of DES by random S-boxes yielded ciphers that were far weaker towards dif-
ferential cryptanalysis than the original algorithm), theoretical works by
O’Connor [253–255] and later by Youssef and Tavares [333–335] have shown
that large random S-boxes are in average very resistant to linear and dif-
ferential cryptanalysis. A way to choose random S-boxes is to make them
key-dependent. As example, this approach has been used in the algorithms
IDEA, RC5, RC6, Blowfish or Twofish.

Random Choice Followed by Filtering Another way to select good
S-boxes is to generate random ones and to check if they have the desired
properties until a good one is found. The following list enumerates common
test criteria:

• Upper bound on every linear characteristic’s probability (according to
Def. 2.3.11).

• Upper bound on every differential characteristic’s probability (accord-
ing to Def. 2.3.3).
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• Lower bound on the non-linearity of the S-box (see Def. 4.1.1).

• Upper bound on the single-bit correlation

∣∣∣∣Pr
x

[S(x)j = xi]−
1

2

∣∣∣∣

where xi denotes the i-th bit of x.

• SAC fullfiled (see Def. 4.1.3)

• Upper bound on the number of gates in a hardware implementation

Although it can be a very heavy and computation-intensive process, this
approach has been used in a variety of block ciphers, including DES, Serpent,
Mars, Crypton, or CAST, for instance.

Algebraic Methods In order to bring non-linearity in a block cipher, one
can use algebraic methods, like mixing non-isomorphic operations (XOR and
addition modulo 232 for 32-bit vectors, for instance), or by using algebraic
operations known to offer good non-linearity properties. Thus, one can see
these S-boxes as data-dependent. We give now a (naturally non-exhaustive)
list of common algebraic constructions:

• Mixing of addition in GF(2)n and in Zn used in the design of FEAL,
for instance.

• Power function in GF(2n) as in LOKI, or Shark.

• Combination of an inverse function x 7→ 1
x in GF(2n) and an affine

transformation over some other incompatible algebraic structure as in
Square, Rijndael, Camellia, and many others.

• Combination of a power function x 7→ xe in GF(2n) and an affine
transformation over Zn (E2, Misty1). Note that this generalizes the
previous case (where e = 2n − 2).

It remains however quite unclear at this time whether a pure algebraic S-
boxes construction method is really as secure as expected (see the discussion
in §4.3.1).

4.1.3 Diffusive Components

The purpose of a diffusive construction is to provide an avalanche effect,
both in the context of differential and linear approximations. In the linear
context, this means that there should be no correlations between linear
combinations of a small set of inputs and linear combinations of a small set
of outputs. In the differential context, small input changes should cause
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large output changes, and conversely, to produce a small a output change,
a large input change should be necessary. We discuss in this chapter several
theoretical concepts which are used to build diffusive constructions in the
practice.

Multipermutations

The concept of multipermutation2 was first introduced by Schnorr and Vau-
denay in [287]. This concept is simply a formalization of perfect diffusion.

Definition 4.1.4 (Multipermutation). An (r, n)-multipermutation over
an alphabet A is a function f from Ar to An such that two different (r+n)-
tuples of the form (x, f(x)) cannot collide in any r positions.

An equivalent definition says that the set of all (r, n)-tuples of the form
(x, f(x)) is an error correcting code with minimal distance n + 1, which
is the maximal possible. Some multipermutations are equivalent to Latin
squares. For instance, a (2, 1)-multipermutation is nothing else as a common
Latin square, i.e. a k × k matrix having elements over a finite set A of
k = #A elements such that all elements are represented in each column and
in each row. A (2, n)-multipermutation is equivalent to a set of n two-wise
orthogonal Latin squares3.

The design of multipermutations over a finite alphabet is a very difficult
problem, as the design of two-wise orthogonal Latin squares is a well-known
difficult one. If we allow f to be a linear function4, then one can use a MDS
code, which is the topic of a next section.

Branch Number Concept

A way to characterize the avalanche effect of a diffusive construction is its
branch number [76], which is a concept proposed by Daemen in his PhD
thesis. In the following, we denote by δW(x) the Hamming weight of a vector
having components in a finite field GF (2n), i.e. the number of components
different from zero.

Definition 4.1.5 (Branch number). Let θ : GF (2n)m → GF (2n)m be a
mapping. Then

B(θ) = min
x6=0
{δW(x) + δW(θ(x))}

is called the branch number B(θ) of θ.

2The term “bipermutation” was suggested by Massey to mean a (2, 2)-
multipermutation, which eventually led to the one of “multipermutation”.

3Two Latin square A and B are orthogonal if the mapping (i, j) 7→ (Ai,j , Bi,j) gets
all possible couples.

4An example of non-linear multipermutation is the one used in CS Cipher.
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The branch number of a diffusive construction gives a measure for the worst
case diffusion: it thus is a lower bound for the number of active S-boxes in
two consecutive rounds of a linear or a differential characteristic. Since a
cryptanalysis will always exploit the worst case, this is a good measure for
the diffusion property.

We note that the Hamming weight δW(x) ≤ m for a vector x and for
any choice of θ. If δW(x) = 1, this implies that B(θ) ≤ m+1. This leads to
the definition of an optimal mapping

Definition 4.1.6 (Optimal mapping). A mapping

θ : GF (2n)m → GF (2n)m

is called optimal if B(θ) = m+ 1.

As a matter of fact, this optimal case corresponds to the multipermutation
definition. A popular implementation of optimal linear invertible mappings
are the MDS codes, which will be discussed afterwards. Several modern
block ciphers use the concept of branch number in their design: this is the
case of Shark, Square or Rijndael, for instance.

MDS Codes

MDS codes have rapidly become a very popular tool in block cipher design;
Vaudenay [311] has first proposed them as an implementation of a multiper-
mutation. Indeed, they are elegant ways to implement multipermutations
and they are optimal invertible linear mappings, in the sense of Daemen’s
branch concept number. We first give the formal definition of a linear code.

Definition 4.1.7 (Linear code). A [n, k, d]-linear code C of length n,
dimension k and minimal distance d is a k-dimensional subspace of the
vector space of n-tuples over a given field, where the distance d between two
codewords is defined to be the number of elements in which they differ.

A well-known result of coding theory is the Singleton bound, which is an
upper bound on the minimal distance of any linear code.

Theorem 4.1.1 (Singleton’s bound). For any [n, k, d]-linear code, the
minimal distance d is upper bounded by

d ≤ n− k + 1

Codes with a minimal distance d = n − k + 1 are called maximal distance
separable (MDS) codes. A well-known example of MDS-codes are the Reed-
Solomon codes. A linear code C can be represented by a generation matrix
Gk×n. This matrix has dimension k × n, and is always of full rank. C is
formed by the subspace of dimension k that is spanned by the rows of G

C =
{
G · x | x ∈ GF (2m)k

}
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As the generation matrix of a code is not unique, one can always write

Ge = T ·G =
[
Ik×kBk×(n−k)

]

where Ik×k is the k × k identity matrix and T is a full-rank matrix; this
form is called the echelon-form matrix of G. The following theorem [275]
(which is nothing but a rewrite of Vaudenay results in the branch number
terminology) ensures that a MDS-code has optimal diffusive properties

Theorem 4.1.2. Let C be a [2n, n, n+ 1]-code over GF (2n). Let Ge be the
generator matrix in echelon form Ge =

[
Ik×kBk×(n−k)

]
. Then C defines an

optimal linear invertible mapping θ:

θ :

{
GF(2m)n → GF(2m)n

x 7→ B× x

Finally, we give an alternate and useful criterion (see [197, page 321] for a
proof thereof) on matrices which allows to test for their optimality in terms
of diffusion.

Theorem 4.1.3. A matrix is an MDS matrix if and only if every sub-matrix
is non-singular.

MDS codes have become an increasing popularity: Shark, Rijndael, Twofish,
Square are examples of ciphers using them as diffusive element. In §4.2, we
will present a formal approach in designing efficient MDS matrices, as well
as new constructions.

Pseudo-Hadamard Transform

The Pseudo-Hadamard Transform (see Fig. 4.4) was proposed by Massey in
the cipher SAFER K-64. This is an unorthodox linear transform that allows
the cipher rapidly to achieve the desired diffusion. The box denoted 2-PHT
is defined as follows, where x and x′ denote the input bytes and y and y′

the output ones.

2-PHT :

{
y = 2x+ x′ (mod 256)
y′ = x+ x′ (mod 256)

The arithmetic is usual byte arithmetic, i.e. performed modulo 256. Between
levels of the linear layer, a decimation-by-2 permutation, which is familiar
from the FFT and the ordinary discrete Hadamard transform, is applied.

4.1.4 Key-Schedule Algorithms

The key schedule algorithm is responsible for deriving subkey material out
of the key to the data randomizing part of the block cipher. We discuss in
this part various issues around the design of key schedule algorithms.
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2−PHT 2−PHT 2−PHT 2−PHT

Figure 4.4: Pseudo-Hadamard Transform

Although block cipher design theory seems now to have several well-
established strategies (which we discuss in §4.1.5) at disposal, the descrip-
tions of the key schedule algorithms found in the academic literature are
astonishingly full of empiric receipts and it is not common to get well-
founded scientific arguments on a specific key scheduling algorithm. The
only usually needed functional property of a key schedule is that it is pos-
sible to compute it in both directions, i.e. one can produce a sequence
rk(0), rk(1), . . . , rk(n) of subkeys from the key k as well as the reverse se-
quence rk(n), rk(n−1), . . . , rk(0). This property is important for the efficiency
of the decryption process.

The key schedule can play an important role for eliminating symmetry
in a block cipher. For instance, it is quite common that a round transfor-
mation treats all bytes of the “current state” in a very similar manner. This
symmetry can be removed by having constants in the key schedule. Fur-
thermore, the round transformation is often the same for all rounds. This
equality can be removed by having round-dependent round constants in the
key-schedule.

Two major tendencies in the key-schedule design can be distinguished.
A goal of older key schedule algorithms is to spread the key entropy in the
subkeys in a “smooth” manner. A supplementary goal of more modern key
schedule algorithms is to bring some one-wayness, in the sense that getting
a subkey does not compromise most of the other subkeys. We discuss now
these two strategies.
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Diffusive Key Schedules

Older block ciphers have often a quite simple key schedule algorithm. One
very illustrative example of this fact is DES. The key schedule algorithm is
responsible to produce 16 subkeys of 48 bits from the 56-bit key. The key is
diffused in the subkeys by a subtle (but completely linear) key bits selection
process which uses rotations and a “compressive permutation”. Thus, every
key bit is used in approximately 14 of the 16 subkeys, although not all bits
are used exactly the same number of times.

Other nice examples of simple key schedules are the one of LOKI, which
uses a Feistel scheme with 12-bit and 13-bit rotations as f-function and the
one of IDEA, which employs rotations as well.

Unfortunately, using such simple, linear algorithms to derive subkey bits
from the key can expose the cipher to annoying, although not dramatic,
properties, like weak and semi-weak keys, complementation properties, or
even related-keys attacks (see §2.3 for more details about these attacks). For
instance, all the attacks against IDEA described in §3.4 do not work it the
key-schedule algorithm of IDEA is replaced by a stronger version.

Modern Key Schedules

In order to eliminate these potential annoying properties, block ciphers de-
signers are using non-linear key schedules. An early example is FEAL, which
uses a kind of Feistel scheme combined with the (slightly modified) f-function
of its data randomizing part. However, it is worth to note that designers
of FEAL assign to the key-schedule as sole task “the generation of different
extended keys from the 64-bit secret key”, without any further motivation.

Many attack models assume that the subkeys are statistically indepen-
dent and uniformly distributed. In order to allow to prove some security
level, one can see the key schedule algorithm as a pseudo-random generator
which uses the key as seed value. For instance, this approach was used in the
design of DFC in a way which was not successful in the original version (as
demonstrated by Coppersmith which exhibited a large class of weak keys);
this was later fixed in the design of DFCv2.

An interesting observation is that many attacks on iterated ciphers first
recover (part of) a round key. This knowledge is subsequently used to recover
other round keys. To make these attacks less efficient, one can generate the
round keys by processing the key with a preimage resistant function. This
idea has been used in the key schedule algorithm of Blowfish and CAST, or
in Shark. It is worth to note that this is not a general rule: Square specifies
its key schedule algorithm as being an “iterative invertible transformation”.

In order to protect block ciphers against exhaustive search attacks, it has
been proposed to render the key schedule process computationally intensive.
In the real world, a key schedule algorithm execution is often bound with
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other time consuming operations, like public-key operations, or network
protocol executions. Thus, as long as the key schedule is precomputed in
memory and the data randomizing part of the block cipher is fast, this
speed loss is not a real disadvantage in terms of performance. However, this
argument holds only if enough memory is available, which is typically not
the case in a smartcard environment, for instance. This concept has been
applied in Blowfish in an intentional way, but most of modern block ciphers
have a key schedule algorithm which is more time consuming than the data
randomizing part.

When choosing the non-linear parts of the key schedule algorithm, block
cipher designers reuse very often the same (or very slightly) modified com-
ponents as in the data randomizing part. This is obviously a real advantage
when implementing the cipher in hardware.

4.1.5 Block Ciphers Design Paradigms

In this part, we discuss several paradigms used in the past to design block
ciphers, as well as their (dis-) advantages.

Empirical Security

A first possibility for a block cipher designer is to choose the empirical secu-
rity strategy. The principle is very simple: one designs the algorithm such
that it fullfils a set of practical design criteria (speed, platform, key size,
implementation complexity) but without any mathematical justification to-
wards the real security level of the cipher. So the cipher is considered to be
secure by its designer(s) (and hopefully by the users) as long as nobody is
able to break it faster than an exhaustive key search.

An example of (early) empirical security design is FEAL. In the first
proposal [296], in 1987, the designers propose a block cipher built on a
Feistel scheme dedicated to be faster than DES and to be an alternative
thereof. This cipher, called FEAL-4, has 4 rounds, a block and a key size of
64 bits. We quote here, for historical purposes, the only statement found in
the paper regarding the cipher’s security:

“FEAL working with no parity in a key block is safe from all-
key attack because it is controlled by a 64-bit key, which is more
secure than the 56-bit DES key. Regarding ciphertext randomiza-
tion, FEAL is considered safe because the randomization indices
are closer to the theoretical values than those of DES.”

As FEAL-4 was broken by den Boer [86] a few months later, the number of
rounds was increased to 8 and called FEAL− 8. In 1990, Biham and Shamir
proposed the differential cryptanalysis [31] and showed that it is possible
to break FEAL with a differential cryptanalysis up to 31 rounds. In the
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same time, other researchers have proposed attacks against several variants
of FEAL: Chassé and Gilbert [113] against 8 rounds in 1990, Tardy-Corfdir
and Gilbert [308] against 4 and 6 rounds in 1991, Matsui and Yamagishi [206]
against 4, 6, and 8 rounds in 1992. In response, Miyaguchi [227] proposed
the so-called FEAL−n cipher family, where n is the number of rounds, to-
gether with FEALNX, a 128-bit key version of the cipher. The current sug-
gested number of rounds is 32. Other studies regarding the resistance of
the FEAL cipher family towards modern cryptanalysis have been presented.
For instance, Moriai, Aoki and Ohta prove in [229] that FEAL-32 is secure
against linear cryptanalysis.

We think that empirical security arguments can no longer be considered
as serious for modern block ciphers. Although FEAL with 32 rounds is se-
cure against modern forms of cryptanalysis, no real credibility is given by
its design against future cryptanalysis. Since the first publication regard-
ing FEAL, several new cryptanalysis methods and more systematic ways of
building secure block ciphers have been proposed.

Heuristic Security

By combining elements having known good properties, like for instance mul-
tipermutations for diffusion and highly non-linear functions for confusion
purposes, one can build block ciphers which have a very good security level.
For instance, CS Cipher is such a cipher. By heuristic security, one means
that some properties like resistance against various attacks can be proven for
an algorithm by using heuristic assumptions, i.e. assumptions that are very
likely to hold. In the case of CS Cipher, Vaudenay [315] proves, that under
a certain assumption, this algorithm is secure5 against linear, differential,
and truncated differentials cryptanalysis. The involved assumption is that
all round keys are uniformly distributed and independent; this is quite intu-
itive, given that the key schedule is not badly flawed. Furthermore, a certain
confidence towards future cryptanalysis methods is given by the underlying
cryptographic primitives.

Provable Security

As outlined in §2.4.3, it is very difficult to really prove security in a general
way for a symmetric block cipher; many older constructions have empiric or
heuristic security foundations, which bring more or less confidence. However,
recent works have proposed interesting theoretical constructions in order to
“prove” certain aspects of security in a block cipher. We discuss them in
this section.

5More exactly, the proofs bound the probability of the best differential and linear
characteristics.
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Recursive Schemes Several theoretical results regarding the resistance
of a block cipher against linear and differential cryptanalysis have been pre-
sented. The following theorem, proven6 by Nyberg and Knudsen [252] for
which concerns the differential cryptanalysis and by Nyberg [250] in the case
of a linear cryptanalysis, gives an upper bound on LPΨ

max and DPΨ
max in the

context of a Feistel scheme.

Theorem 4.1.4. Assume that each round function fi in a Feistel scheme Ψ
is bijective and that {

LPfi
max ≤ p

DPfi
max ≤ p

If the entire function Ψ has at least four rounds, then
{

LPΨ
max ≤ 2p2

DPΨ
max ≤ 2p2

An example of cipher using this theorem is Misty1. In the paper describing it,
Matsui shows how to “amplify” the results stated by this theorem with help
of a recursive Feistel scheme, i.e. a Feistel scheme whose round function is
a Feistel scheme, etc. Hence, by using a three level recursion, Matsui shows
that the upper bound is p4 instead of p2.

Another example of a modern and recursive design is DEAL. In order
to build a 128-bit block cipher, Knudsen simply takes a well-known and
well studied 64-bit algorithm, DES, and uses it as a round function in a
Feistel scheme. This constrction has a level of recursion equal to two. The
main advantages of this approach are a good backward compatibility with
existing hardware and software implementations and a good confidence in
its overall security level, while serious drawbacks are of course the resulting
speed performances.

Decorrelation As described in the previous sections, the problem of secu-
rity analysis of a block cipher is often solved heuristically by giving evidences
that known types of cryptanalysis (like linear or differential cryptanalysis)
cannot work. Approaches have seldom been proposed in order to formally
deal with security in a general way, i.e. against (still) unknown forms of
attack. Vaudenay’s decorrelation theory (see §2.4.3 and [320]) proposes
the Peanut construction (over which DFC is based) which is basically an
r-round Feistel scheme with decorrelation modules as a round function. If
these decorrelation modules achieve a d-wise decorrelation bias of ε, by us-
ing the multiplicative properties and the triangular inequality with a truly
random 3-round Feistel construction, one obtains from the Luby-Rackoff
Theorem [191] that

Decd(F ) ≤
(
2d22−

m
2 + ε

)b r
3c

6The primitive results have been slightly improved by Aoki and Ohta in [10].
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where m is the block length in bits. A drawback is that decorrelation with
large a d requires very long keys; this explains why one uses d = 2 (like in
DFC). The security may look very limited but one can still prove security
against reasonable generalizations of differential and linear cryptanalysis.
One can even prove the resistance against any statistical attack which uses
simple events on (x,Ψ(x)) pairs.

4.1.6 Target Platforms

Block ciphers are typically implemented on very different target platforms,
depending on their usage. We briefly discuss in this part the constraints
imposed by these different kinds of platforms on the design of fast block
ciphers. We successively treat hardware platforms, low-cost microprocessors,
and high-end microprocessors.

Hardware

Clearly, the most efficient way to implement a block cipher consists in de-
signing a dedicated electronic circuit, instead of programming it using a
general-purpose microprocessor. According to Standaert [302], there exist
two main approaches: the first one consists in using a purpose-built hard-
wired technology, e.g. an Application Specific Integrated Circuit (ASIC) to
perform the execution of a block cipher in hardware while the second method
consists in using so-called “reconfigurable devices”, like Field Programmable
Gate Arrays (FPGAs).

ASICs are specifically designed to perform a given computation, and are
thus extremely fast and efficient. However, the circuit cannot be modified
after its production. FPGAs present similar properties, but a portion of
the circuit is dedicated to the reconfigurability of the device instead of the
application. This implies a decrease of performances which keeps however
very reasonable compared to the benefits of the reconfigurability.

It is worth noticing that ASICs don’t define real constraints on the design
of block ciphers by themselves, since any cipher which can be implemented
in software can be implemented by an ASIC. However, an interesting feature
of FPGAs is that they usually can compute very efficiently any mapping on
4-bit values. Namely, FPGA can be viewed as a large set of programmable
blocks whose logic and routing are user-programmable, where each logic
block usually contains a 4-bit arithmetic and logic unit.

Low-Cost Microprocessors

By low-cost microprocessors, we mean processors that can typically be found
on low-cost smartcards, or on low-cost embedded devices. In this section, we
list the requirements dictated by smartcards regarding the implementation
of a block cipher.
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- Low RAM usage: the resource representing the most important bot-
tleneck in a block cipher implementation on a smartcard is of course
the RAM usage. The amount of efficiently usable RAM available on a
smartcard is typically in the order of 256 bytes. It is a bit larger on an
ARM architecture, but as this type of smart card is devoted to contain
more than a simple encryption routine, it would be a good thing not
to use a tool large part of the available RAM.

- ROM usage: ROM is not as scarce as RAM on a smartcard, so the code
size can be greater than the RAM usage. However, it is reasonable
not to have a minimal code size (instructions + possible tables) greater
than 1024 bytes.

- Speed : Obviously, the encryption/decryption (with key schedule) op-
eration should last a minimal time.

- Complex operations: It is extremely costly to implement multiplica-
tions of operands greater than 8 bits.

As smartcards are one of the preferred targets for modern block ciphers,
we give here more insight into two common categories of available smart-
cards: the 8051 and the ARM architectures. The first one is a typical cheap
micro-controller developed by Intel Corp. [136] which is used in many smart-
cards; it is a low-cost device, typical of everyday life usage such as Pay-TV
applications. The second one, developed by ARM Ltd. [12] is supposed to be
representative of a powerful smartcard, aimed at providing several advanced
services, like security, for instance.

8051 Architecture The 8051 architecture forms one of the most-used
basic, low-cost microprocessor used in the smartcards. We can sketch its
main characteristics as follows. Typically, a 8051 microcontroller implements
an 8-bit Harvard architecture. Depending on versions, performance peeks
vary between 1 (at 12 MHz) and 2.5 millions (at 30 MHz) 8-bits instructions
per second, but we note that the standard clock frequency for a smartcard is
fixed to 3.57 MHz. Usually, 32 to 2304 bytes of RAM are available. However,
the RAM is organized in pages of 256 bytes, and accessing data located on
another page is a rather costly operation. An 8051 is usually provided with
6 KB to 32 KB of ROM, and 8 general-purpose 8-bit registers are available.

An 8051 possesses a CISC architecture, i.e. it makes use of a complex,
variable-sized set of instructions; some of them allow interesting spare of
time in the context of a block cipher implementation. Furthermore, it is
an accumulator-based architecture which means that data processing in-
structions specify only one operand; the other one must be stored in the
accumulator before the instruction call, and the result will also be placed
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in the accumulator. Several addressing modes are supported: for many
instructions, operating on memory is as fast as on registers.

The 8051 has a byte-to-byte multiplier, i.e. an instruction allowing to
multiply two 8-bits values yielding a 16-bits result. We note however that
this instruction may not always be implemented in hardware, which can
result in varying execution time among different versions of the chip. Finally,
the 8051 has a rotation instruction; it is however limited to rotate an 8-bit
value by one bit position (to the left or to the right).

ARM Architecture ARM (for Advanced RISC Machine) is an archi-
tecture developped by ARM Ltd. [12]; the ARM architecture is a typical
example which can be found on more sophisticated smartcards, for instance.

Its main characteristics are the following: ARM microprocessors are built
on a 32-bit, 3-stages pipelined von Neumann architecture, with 3-address
instructions: every data processing instruction specifies both the operands
and the destination place for the results. 16 registers are available, some of
them having a preassigned function (like the program counter, or the stack
pointer). It is a LOAD-STORE-architecture, i.e. data processing instruc-
tions always operate either on direct values or on registers. Every instruc-
tion can be conditionally executed according the the state of flags, and there
is a barrel shifter, which means that the second operand in a data process-
ing instruction can optionaly be shifted or rotated before being processed.
This architecture can furthermore multiply two 32-bit values, yielding the
32 low-order bits of the product (some more advanced ARM processors have
the possibility to get the full 64-bit result). Finally, there is typically a few
kilobytes of RAM at disposal.

32/64-bit Microprocessors

This category of microprocessors is the one found in common computers.
Although some constructors are, at the time of writing, shipping machine
built on top of 64-bit processors, 32-bit architectures should remain a stan-
dard platform for a few years. For a long time, 64-bit RISC CPUs were
not available on low-cost, desktop computers used by everybody. They
were reserved to mainframes and to very expensive work stations, sold by
Hewlett-Packard, Compaq and other companies. This situation is changing
as most chip manufacturers are shipping 64-bit microprocessors and one can
expect a slow increase of such CPUs in a larger public.

Typically, a 64-bit RISC CPU offer many more registers than a CISC
architecture, while the latter can usually do complex operations (like bit ro-
tation) faster. Another advantage of RISC architectures is that it is always
possible to get the fastest possible implementation with a high-level lan-
guage, while it is not the case in a CISC architecture: an optimized version
of a program must frequently be written in assembly code.
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Processor cache size [kB] Note

Alpha 21164 8 (data)

Alpha 21264 64 (data)

AMD Athlon XP 128 (data + code)

AMD Athlon MP 128 (data + code)

AMD Opteron 64 (data)

Intel Pentium III 16 (data)

Intel Pentium IV 8/16 (Prescott) (data)

Intel Xeon 8 (data)

Intel Itanium 16 (data)

Intel Itanium2 16 (data)

PowerPC G4 32 (data + code)

PowerPC G5 32 (data)

UltraSparc II 16 (data)

UltraSparc III 64 (data)

Figure 4.5: Amount of L1 cache for various high-end microprocessors

We figured out that the main bottleneck of these architectures regarding
the design of fast block ciphers is the amount of the fastest memory (typically
named L1 cache) at disposal, as fetching memory cells which are not present
at this level of the memory hierarchy results in very costly (in terms of
clock cycles) cache misses. This implies an upper-bound on the amount
of precomputed data necessary to execute an optimized implementation.
Fig. 4.5 lists these figures for some popular 32/64-bit microprocessors.

4.2 Fast Diffusive Components

Although linear perfect diffusion primitives (i.e. MDS encoding matrices or
linear multipermutations), are nowadays widely used in block ciphers, very
little systematic work has been published so far, to the best of our knowl-
edge, on how to find “efficient” ones. In this part, we present a first attempt
to systematically address this problem by considering software implemen-
tations of such components on various platforms. Interestingly, this opens
several combinatorial problems which we investigate, and finally, we propose
a sequence of new efficient constructions of 4× 4 and of 8× 8 MDS matrices
which can be used e.g. in block ciphers. We refer the reader to §4.1.3 for an
introduction on perfect diffusive components.

It is actually very difficult to mathematically define what is an “optimal”
matrix in terms of the efficiency of its implementation on, since there exist
a large number of criteria which may be taken into account; furthermore,
these criteria are usually very dependent of the target platform. In this
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part, we have purposedly chosen to treat the problem of constructing MDS
matrices whose implementation is very efficient on most low-cost platforms,
like 8051, or ARM architectures (see §4.1.6 for a technical overview of these
platforms). For this, we isolate a few criteria which look important, and we
derive several optimality results based on these criteria.

Let K = (K,+,×) be a field of characteristic 2. Typically, we have
K = GF(256). We consider linear multipermutations defined from Kp to Kq
and we denote by M a q×pmatrix whose elements lie in K. Let furthermore
Mi,j denote the matrix element on row i and column j, where 1 ≤ i ≤ q
and 1 ≤ j ≤ p. Let us furthermore denote vectors taking elements in K by
x,y, . . ., and the i-th component of the vector x by xi. We interpret a linear
multipermation by the matrix multiplication x 7→M× x which can simply
be rewritten as

xi =

p∑

j=1

Mi,jxj for i = 1, . . . , q.

Here, we note that the addition in K can be efficiently implemented using a
XOR operation, denoted⊕, which is available on virtually all microprocessor
architectures. We describe now how to implement in an efficient way such
mappings, on the one hand, on 32/64-bit architectures which dipose of large
amounts of very fast memory, and on the other hand, on 8-bit low-cost
architectures which do not have large amounts of memory at disposal.

4.2.1 Performances of Linear Multipermutations

Modern 32/64-bit microprocessors typically have relatively large quantities
of very fast memory, also called cache memory. By “very fast”, we mean
the fastest accessible cache memory, usually named L1 cache7. Fig. 4.5,
page 160, lists typical high-end microprocessors and the quantity of L1 cache
they have at disposal.

When enough fast memory is available, a well-known and quite sim-
ple implementation strategy (described in [81], for instance) can be applied.
Namely, the columns of M can be partitioned into several sub-columns whose
size correspond to the microprocessor word size or less. Let us denote by w
the size of the words in terms of elements of K. Then, all possible multipli-
cations can be precomputed and put in a lookup table. In other words, we
consider the matrix M as a block matrix of type d qw e× p, the output vector
y as a block vector of d qw e elements, and where every block are vectors of
w elements of K, except the blocks in the last row which may be smaller if
w does not divide q. For instance, let us consider the example of a 32-bit

7Note that we focus here on L1 cache, since accessing data which are not present at
this level of cache hierarchy produces penalties of a large number of clock cycles on most
of microprocessors. However, it has been shown by Lipmaa [188] that in certain precise
cases, one can take profit of choosing an alternate implementation strategy exploiting
higher levels of the cache hierarchy.
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architecture, where K = GF(28), and p = q = 4 (as in AES or in FOX64, for
instance). This fixes w = 4. We define four tables Tj, with 1 ≤ j ≤ 4 of 256
4-words vectors such that

Tj : u 7→




M1,j · u
M2,j · u
M3,j · u
M4,j · u


 for u ∈ K

Then the evaluation of y = M× x reduces to the computation of

y = T1(x1)⊕ T2(x2)⊕ T3(x3)⊕ T4(x4)

which represents three XORs and four table lookups. The memory needs
are, in this example, four tables of 256 32-bit values each, i.e. 4096 bytes;
this clearly fits in the L1 cache of modern high-end microprocessors. An
8 × 8 matrix multiplication over the same field K would involve 7 XORs, 8
table lookups, and 8 tables of 256 64-bit values, i.e. 16384 bytes in total.
Under this approach, performances only depend on the external character-
istics of M and of the microprocessor, i.e. p, q, w, and #K, but they do
not depend on the internal structure of M. Interestingly, one can further-
more combine this strategy with a possible simultaneous evaluation of 8-bit
substitution boxes by directly taking them into account in the precomputed
tables (see §4.3.5 for detailed explanations about an example of this strategy
of implementation).

The situation becomes more problematic for low-cost 8-bit architectures,
since one cannot afford to waste too much memory for storing precomputed
data: thus, the matrix multiplication must be computed on-the-fly, and in
this case, the internal structure of M has an impact on the performances.
Obviously, it is necessary to evaluate in the order of p · q operations in K as
no element can be equal to the additive neutral element of K (otherwise, it
would be a contradiction to Th. 4.1.3).

A first solution would consist of expressing each element x of K as x = g i,
where g is a generator of the multiplicative group of K, and to store the
precomputed mappings x 7→ i and i 7→ x (this costs 512 bytes of memory if
K = GF(28)). Thus, any multiplication in K can be implemented with help
of three table lookups and an addition modulo 255. A table lookup can even
be saved as the multiplications are actually between a variable operand and
a constant one, thus the logarithm of the constant terms can be hard-coded.
However, this approach remains quite costly.

Some multiplications tables are quite simple though: for instance, the
multiplication by 1 (the multiplicative neutral element of K) is trivial and do
not cost anything. From this point, we will adopt the following approach: all
multiplication tables by Mi,j such that Mi,j 6= 1 are pre-computed. Thus,
the three following properties of matrices are playing an important role.
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Definition 4.2.1 (Number of occurences of 1). Let K∗ be a set including
a distinguished element denoted 1. Let M be a q× p matrix with Mi,j ∈ K∗
for all i and j. Then κ(M) is defined to be the number of entries (i, j) of
M such that Mi,j = 1 and is called the number of occurences of 1:

κ(M) = #{Mi,j : Mi,j = 1}.

Definition 4.2.2 (Number of (non-trivial) entries). Let K∗ be a set
including a distinguished element denoted 1. Let M be a q × p matrix with
Mi,j ∈ K∗ for all i and j. Then ϑ(M) is defined to be the number of different
entries (i, j) of M and is called the number of entries of M:

ϑ(M) = #{Mi,j : 1 ≤ i ≤ q and 1 ≤ j ≤ p}.

Furthermore, if 1 occurs in M, we define ϑ1(M) = ϑ(M)−1 as the number
of non-trivial entries of M. Otherwise, ϑ1(M) = ϑ(M).

Under this approach, one needs to store pre-computed tables having a total
size equal to

ϑ1(M)×#K
to be able to implement a matrix multiplication, and the total time com-
plexity may be expressed as q(p− 1) XORs and

ϑ1(M1,.) + . . .+ ϑ1(Mq,.)

table lookups, where Mi,. denotes the i-th column of M. Clearly, the quan-
tity κ(M) is linked to the data complexity of the implementation while
ϑ1(M) is related to its time complexity. Thus, a natural goal consists in
finding matrices or skeletons of matrices minimizing ϑ1(.) and maximizing
κ(.).

A further possibility to trade some multiplication tables against some
computation units consists in filling M with “efficient” entries, i.e. elements
of K different of 1 which can be efficiently multiplied with any operand.
For instance, if K = GF(28), one can interpret the elements of the field by
polynomials a0 + a1x+ . . .+ a7x

7 of degree at most seven with coefficients
ai in GF(2), and represent these polynomials as 8-bit strings a7 · · · a1a0. In
this case, the multiplication by x can simply be implemented by a logical left
shift by one bit and a conditional XOR with a constant when a carry bit is
set. Note that one should be especially careful about timing attacks; we give
an example of such a constant-time implementation on an 8051 architecture
in §4.3.5.

Similary, the division by x can be implemented with the help of a logical
right shift and a conditional XOR with a constant. Furthermore, if a matrix
M includes to elements x and x + 1, then we can omit the multiplication
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table by x+ 1, since one can emulate it by one multiplication by x followed
with an XOR.

Another example is the multiplication by constants which are even power
of a coefficient for which we make use of a precomputed table. For instance,
if have the coefficients x and x2 in a matrix, we do not need a precomputed
table for the multiplication by x2 since it can be emulated by two lookups
in the table storing the results of a multiplication by x.

Finally, we can also algebraically optimize implementations by playing
with temporary variables storing intermediate results during the computa-
tions.

4.2.2 Bi-Regular Arrays

We concentrate now on finding MDS matrices with high κ and low ϑ co-
efficients. The following definition introduces bi-regular arrays (and their
converse, namely bi-singular arrays) which are useful objects to build MDS
matrices. Clearly, a bi-singular array cannot be an MDS matrix since it con-
tains a 2×2 singule sub-determinant. Hence, being bi-regular is a necessary
(but not sufficient) condition for being an MDS matrix.

Our approach for constructing MDS matrices with high κ and low ϑ
coefficients is first to construct a bi-regular array, second to assign elements
to some non-zero field values until we get an MDS matrix. We can e.g. look
at random values until it succeeds or concentrate on efficient GF elements,
and using a brute-force search.

Definition 4.2.3 (Bi-Regular Arrays). Let K∗ be a set including a dis-
tinguished element denoted 1. We say that a 2× 2 array with entries in K∗
is bi-regular if at least one row and one column have the property of having
fferent entries; a q × p array with entries in K∗ is bi-regular if all 2 × 2
sub-arrays are bi-regular.

Definition 4.2.4 (Bi-Singular Arrays). An array which is not bi-regular
is called bi-singular.

We state now two theorems summarizing the optimal values of both κ and
ϑ1 for 1 ≤ p, q ≤ 8 such that it is still possible to build bi-regular arrays.
We refer to [152] for their proof.

Theorem 4.2.1. The maximal possible value of κ(M) such that it is possible
to find a q × p bi-regular array M for 1 ≤ p, q ≤ 8 is given in Fig. 4.6.

Theorem 4.2.2. The minimal possible value of ϑ1(M) such that it is pos-
sible to find a q× p bi-regular array M for 1 ≤ p, q ≤ 8 is given in Fig. 4.7.
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2 3 4 5 6 7 8

2 3 4 5 6 7 8 9
3 4 6 7 8 9 10 11
4 5 7 9 10 12 13 14
5 6 8 10 12 13 14 17
6 7 9 12 13 16 18 19
7 8 10 13 14 18 21 22
8 9 11 14 17 19 22 24

Figure 4.6: Maximal possible value for κ(M) for a bi-regular array M

2 3 4 5 6 7 8

2 2 2 2 3 3 3 3
3 2 2 3 3 3 3 4
4 2 3 3 3 4 4 4
5 3 3 3 3 4 4 4
6 3 3 4 4 4 4 5
7 3 3 4 4 4 4 5
8 3 4 4 4 5 5 5

Figure 4.7: Minimal possible value for ϑ1(M) for a bi-regular array M

4.2.3 New Constructions

We study now constructions with p = q = 4 over the field K = GF(256).
Elements are represented as polynomials of degree at most 7 over GF(2),
the a0 + a1x + · · · + a7x

7 polynomial being represented by the bitstring
a7 · · · a1a0. Formally, x represents a root of an irreducible polynomial over
GF(2) of degree 8.

The AES Matrix

Here is the MDS matrix which is the core diffusive component of the AES [81,
245]:

MAES =




x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x


 (4.1)

Multiplication by x results in a logical shift and a conditional XOR, while the
multiplication by x+1 requires an additional XOR . In this case, ϑ(MAES) =
3 is optimal according to our criteria and Th. 4.2.2, but κ(MAES) = 8 is
not. As described in [81], a multiplication by (4.1) can be implemented
(in a pseudo-C notation) using 15 XORs, 4 table lookups and 3 temporary
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t = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */

u = a[0];

v = a[0] ^ a[1]; v = time[v]; a[0] = a[0] ^ v ^ t;

v = a[1] ^ a[2]; v = time[v]; a[1] = a[1] ^ v ^ t;

v = a[2] ^ a[3]; v = time[v]; a[2] = a[2] ^ v ^ t;

v = a[3] ^ u; v = time[v]; a[3] = a[3] ^ v ^ t;

Figure 4.8: Multiplication by MAES

variables with a single 256-byte table, namely the multiplication by x (see
Fig. 4.8).

As a side remark, we note that AES also requires to implement the inverse
MDS matrix for the decryption operation. Unfortunately, this inverse matrix
(described in Eq. (4.2)) is not as implementation-friendly as Eq. (4.1), since
it requires to implement the multiplication by four different coefficients:

M−1
AES =




x3 + x2 + x x3 + x+ 1 x3 + x2 + 1 x3 + 1
x3 + 1 x3 + x2 + x x3 + x+ 1 x3 + x2 + 1

x3 + x2 + 1 x3 + 1 x3 + x2 + x x3 + x+ 1
x3 + x+ 1 x3 + x2 + 1 x3 + 1 x3 + x2 + x


 (4.2)

In this case, we need either considerably more accesses to the table storing
all possible results of an element multiplied by x, or we need additional
tables. Another possibility is to consider Eq. (4.2) as the product of MAES

with another matrix, namely

M−1
AES = MAES ×




x2 + 1 0 x2 0
0 x2 + 1 0 x2

x2 0 x2 + 1 0
0 x2 0 x2 + 1


 ,

and accordingly, to implement two matrix multiplications, one of which
being required by the encryption operation, and the other being reasonably
simple to implement.

An Efficient 4× 4 Matrix

As we have seen, κ
4,4 = 9 and ϑ4,4 = 3 and we can hit both optimal criteria

(M4 in Eq. (4.3)); let us furthermore consider a second matrix M′
4, which

is a permuted version of M4.

M4 =




a 1 1 1
1 1 b a
1 a 1 b
1 b a 1


 M′

4 =




a 1 1 1
1 a 1 b
1 b a 1
1 1 b a


 (4.3)
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u = a[0] ^ a[1] ^ a[2] ^ a[3]; /* a is the input vector */

a[0] = u ^ timeap1[a[0]]; v = timeap1[a[1]];

a[2] = timeap1[a[2]]; a[3] = timeap1[a[3]];

a[1] = u ^ v ^ timebp1[a[3]]; a[3] = u ^ a[3] ^ timebp1[a[2]];

a[2] = u ^ a[2] ^ timebp1[v];

Figure 4.9: Multiplication by M′
4

One can easily verify that necessary conditions for M′
4 being an MDS matrix

are: 0, 1, a and b must be pairwise different, a 6= b2, a 6= b+1, and a2 6= b. If
we make use of two multiplication tables (namely, by a+1 and by b+1), we
can implement a multiplication by M′

4 as illustrated by Fig. 4.9. This im-
plementation needs 10 XORs, 2 temporary variables, 7 table lookups in two
256-byte tables. This allows us to decrease the overall number of temporary
variables and of operations (at the cost of a supplementary precomputed
table), if the XOR operations and table lookups generate identical costs. A
permuted version of M4 is used in the design of FOX64; note that as this
latter does make use of a self-inverting high-level scheme, we do not require
that the inverse of M4 to be efficiently implementable.

Efficient 8× 8 Matrices

Here, we give explicit constructions with p = q = 8 over K = GF(256).

Circulating-Like Matrix By using the same circulating-like construc-
tion of the AES matrix, but with p = q = 8, we obtain κ = 21 and ϑ = 7
which are not optimal figures.

M8 =




f 1 1 1 1 1 1 1
1 1 a b c d e f
1 f 1 a b c d e
1 e f 1 a b c d
1 d e f 1 a b c
1 c d e f 1 a b
1 b c d e f 1 a
1 a b c d e f 1




Many different possibilities for filling the coefficients exist; we give here
as illustration two different examples. For GF(256) represented by the irre-
ducible polynomial x8 +x4 +x3 +x2 +1 over GF(2), a possible combination
is given by a = x+1, b = x3+1, c = x3+x2, d = x, e = x2 and f = x4. Note
that we need a single precomputed table, namely the multiplication by x. If
we can afford two precomputed multiplication tables (by x and by x−1, in
this case), when using x8 +x7 +x6 +x5 +x4 +x3 +1 as field representation,
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y[0] = x[0] ^ x[1] ^ x[2] ^ x[3] ^ x[4] ^ x[5] ^ x[6] ^

xtime[x[7]];

y[1] = x[1] ^ x[0] ^ x[7] ^ xtime[x[1] ^ x[3] ^ xtime[4]] ^

xm1time[x[2] ^ x[5] ^ xm1time[x[2] ^ x[6]];

y[2] = x[0] ^ x[6] ^ x[7] ^ xtime[x[0] ^ x[2] ^ xtime[3]] ^

xm1time[x[1] ^ x[4] ^ xm1time[x[1] ^ x[5]];

y[3] = x[6] ^ x[5] ^ x[7] ^ xtime[x[6] ^ x[1] ^ xtime[2]] ^

xm1time[x[0] ^ x[3] ^ xm1time[x[0] ^ x[4]];

y[4] = x[5] ^ x[4] ^ x[7] ^ xtime[x[5] ^ x[0] ^ xtime[1]] ^

xm1time[x[6] ^ x[2] ^ xm1time[x[6] ^ x[3]];

y[5] = x[4] ^ x[3] ^ x[7] ^ xtime[x[4] ^ x[6] ^ xtime[0]] ^

xm1time[x[5] ^ x[1] ^ xm1time[x[5] ^ x[2]];

y[6] = x[3] ^ x[2] ^ x[7] ^ xtime[x[3] ^ x[5] ^ xtime[6]] ^

xm1time[x[4] ^ x[0] ^ xm1time[x[4] ^ x[1]];

y[7] = x[2] ^ x[1] ^ x[7] ^ xtime[x[2] ^ x[4] ^ xtime[5]] ^

xm1time[x[3] ^ x[6] ^ xm1time[x[3] ^ x[0]];

Figure 4.10: Multiplication by M8

another possible combination is a = x + 1, b = x−1 + x−2, c = x, d = x2,
e = x−1 and f = x−2. An implementation using 29 table lookups, 71 XORs
is given in Fig. 4.10.

Matrix with Rectangle Patterns We obtain κ = 15 and ϑ = 5 so this
is optimal for which concerns the number of different coefficients with the
following matrix.

Mrect =




b a c b d c 1 d
b c a d b 1 c 1
c b d a 1 b 1 c
c d b 1 a 1 b d
d c 1 b 1 a d b
d 1 c 1 b d a c
1 d 1 c d b c a
1 1 d d c c b b




Representing GF(256) with x8 + x7 + x6 + x5 + x4 + x3 + 1 as irreducible
polynomial, a possible combination is given by a = x−3 + x−1, b = x−2 +
x−1 + 1, c = x4 + x and d = x. With x8 + x4 + x3 + x2 + 1 as irreducible
polynomial, a valid combination is a = x + 1, b = x4 + 1, c = x4 + x
and d = x. Using these coefficients, we are able to implement this matrix
multiplication with the same amount of table lookups (i.e. 16), 54 XORs
instead of 56 and two less temporary variables than the matrix used by the
designers of Khazad (as described in [18]), for instance (see Fig. 4.11). Here,
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t0 = x[0]^x[1]; t1 = x[0]^x[2];

t2 = x[3]^x[5]; t3 = x[1]^x[4];

t4 = x[2]^x[4]; t5 = x[5]^x[7];

t6 = x[3]^x[6]; t7 = x[4]^x[6];

r1 = t1^t5; r2 = t2^t4;

r3 = t3^t6; r4 = t2^t6;

y[0] = t0^t6^xtime[t3^t5^x[2]]^x4time[t1^t2];

y[1] = r1^x[4]^xtime[t6^x[1]^x[2]]^x4time[t0^t7];

y[2] = r4^t3^xtime[r1^t2]^x4time[t0^t5];

y[3] = r2^x[6]^xtime[t0^x[4]^x[7]]^x4time[t1^x[6]];

y[4] = r2^x[7]^xtime[t1^x[5]^ x[6]]^x4time[x[2]^x[3]^x[7]];

y[5] = r3^xtime[r1^x[7]]^x4time[t4^x[7]];

y[6] = r1^xtime[r3^x[7]]^x4time[r4];

y[7] = t0^x[6]^x[7]^xtime[r2]^x4time[t5^t7];

Figure 4.11: Multiplication by Mrect

we use two precomputed tables, namely xtime[.] (multiplication by x) and
x4time[.] (multiplication by x4). We might do even better by dedicated
optimizations.

4.2.4 Open Problems

MDS matrices are a well-known way to build linear multipermations, i.e. op-
timal diffusion components which can be used as building blocks of cryp-
tographic primitives, like block ciphers and hash functions. Although their
implementation is quite straightforward on 32/64-bit architectures, which
have large data L1 caches and thus allow to store large precomputed tables,
we need to evaluate the matrix multiplication on-the-fly on low-cost 8-bit
architectures, and we can afford only a very limited amount of precomputed
data.

In this part, we have studied MDS matrices under the angle of efficiency,
chosen an implementation strategy, defined mathematical criteria according
to this strategy; furthermore, we give new constructions for efficient 4 × 4
and 8× 8 matrices over GF(256).

We would like to stress out that, although not completely arbitrary, our
choice of implementation strategy may not be optimal in certain scenarii, or
under certain precise application-driven constraints. Thus, future potential
investigations may go in the direction of hardware implementations of linear
multipermutations, for instance, which we do not cover. Furthermore, we
may extend our mathematical considerations criteria to the specific case of
SPNs; such matrices must have inverses which are also efficient, for fast
decryption operations.
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4.3 The FOX Family of Block Ciphers

In this section, we describe the design of a new family of block ciphers, named
FOX, developed for the company MediaCrypt AG [218]. The main goals of
this design, besides a very high security level, are a large implementation
flexibility on various platforms as well as high performances. The high-level
structure is based on a Lai-Massey scheme, while the round functions are
substitution-permutation networks. In addition, we propose a new design
of strong and efficient key-schedule algorithms.

The section is organized as follows: in §4.3.1, we motivate the need for
a new design, in §4.3.2, we give a formal description of the block ciphers,
then we describe the rationales behind our design in §4.3.3; the security
foundations are developed in §4.3.4, where we recall some Luby-Rackoff-like
results about the Lai-Massey scheme, we analyse the security of FOX towards
linear and differential cryptanalysis and we discuss some issues related to
other attacks. Finally, we discuss several implementations aspects in §4.3.5,
where some results about the performances of the ciphers are given.

4.3.1 Motivation

Inevitably, a burning question before designing a new block cipher consists
in knowing whether it is really useful or not ! First of all, a very large number
of algorithms have been published since the beginning of the 80’s (see for
instance Fig. 2.2, page 11), and among this list, a reasonable fraction thereof
is still considered as both sufficiently fast and secure for any practical use.
Furthermore, the AES [3] and NESSIE [247] efforts, among others, have
resulted in a number of new proposals of block ciphers, in parallel with
serious advances in the cryptanalysis field.

However, it is noteworthy that there exists a clear trend in direction of
lightweight and fast key-schedule algorithms, as well as substitution boxes
based on purely algebraic constructions. In a parallel way, we observe that,
on the one hand, several of the last published attacks against block ciphers
take often advantage of exploiting “simple” key-schedule algorithms (nice
illustrations thereof are certainly Muller’s attack [233] against Khazad and
Phan’s impossible differential cryptanalysis of 7-rounds AES [264]), and, on
the other hand, algebraic S-boxes are helpful to Courtois-Pieprzyk algebraic
attacks [70], and lead to puzzling properties as shown e.g. by [16, 104, 228,
235] (see §2.2.3, page 25, as well). Finally, despite of the standardization
effors, there still exists in the business world some demand of proprietary
algorithms being publicly reviewed.

Our first goal is to offer a serious and secure alternative to block ciphers
following present trends; we have explicitely chosen to avoid a lightweight
key-schedule and a pure algebraic construction for the S-boxes. Our second
goal is to reach the highest possible flexibility, being in terms of round
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Name Block size (in bits) Key size (in bits) Rounds number

FOX64 64 128 16

FOX128 128 256 16

FOX64/k/r 64 k r

FOX128/k/r 128 k r

Figure 4.12: Members of the FOX family

number, key size, block size and in terms of implementation issues. For
instance, we feel that it is still useful to propose a 64-bit block size flavour
for back-compatibility reasons. Our last motivation was to design a family
of block ciphers which compares favourably with the performances of the
fastest block ciphers on hardware, 8-bit, 32-bit, and 64-bit architectures.

Finally, we have adopted the following security objectives for FOX: the
mapping (x, k) 7→ ek(x) should be indistinguishable from a uniformly dis-
tributed random function, the key schedule should output pseudo-random
sequences of subkeys, and the best attacks applying to FOX should be the
generic ones (i.e. exhaustive key search, time-memory tradeoffs, dictionnary
attacks, ...).

4.3.2 Description

The family consists in two main block cipher designs, the first one having a
64-bit blocksize and the other one a 128-bit blocksize. Each design allows
a variable number of rounds and a variable key size up to 256 bits. The
different members of the FOX family are listed in Fig. 4.12. The follow-
ing conditions must hold in the case of FOX64/k/r and FOX128/k/r: the
number of rounds r must satisfy 12 ≤ r ≤ 255, while the key length k must
satisfy 0 ≤ k ≤ 256, with k multiple of 8.

Notations and Representation of GF
(
28
)

We first describe some ge-
neric conventions used for the description of the FOX family. A variable x
written with the suffix “(n)” (i.e. x(n)) indicates that x has a length of n bits.
For instance, y(1) is a single-bit variable and f(64) is a 64-bit value. The suffix
will be omitted if the context is clear. A variable x written with the suffix
“[a...n]” (i.e. x[a...b]) indicates the bit subset of the variable x beginning at
position a (inclusive) and ending at position b (inclusive). Indexed variables
are denoted as follows: xi is a variable x indexed by i. A variable x indexed
by i with a length of ` bits is denoted xi(`). A C-like notation is used for
indexing which means that indices begin with 0. The suffix l (r) is used to
denote the left (right) half of a variable. For instance, xl is the left half of
the variable x and xr is its right half. The suffixes ll, lr, rl, rr are used to
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denote quarters of a variable. For instance, x = xll||xlr||xrl||xrr. In general,
the input of a function f is denoted x and its output y.

Some of the internal operations used in FOX are the addition and the
multiplication in the finite field with 256 elements GF(28). We describe now
the representation of GF(28) which is used in the FOX definition.

Definition 4.3.1 (Irreducible Polynomial P(α)). The irreducible poly-
nomial which represents GF

(
28
)

in the FOX block cipher family is the irre-
ducible polynomial over GF (2) defined by

P(α) = α8 + α7 + α6 + α5 + α4 + α3 + 1.

Elements of the field are polynomials in α of degree at most 7 with coeffi-
cients in GF(2) and the addition and multiplication operations are performed
modulo P(α). The field elements are identified to 8-bit strings as follows.

Definition 4.3.2 (Representation of GF(28) Elements). Let s be an
8-bit binary string

s = s0(1)||s1(1)||s2(1)||s3(1)||s4(1)||s5(1)||s6(1)||s7(1)

The corresponding field element is then defined to be

s0(1)α
7 + s1(1)α

6 + s2(1)α
5 + s3(1)α

4 + s4(1)α
3 + s5(1)α

2 + s6(1)α+ s7(1).

In this chapter, a big-endian ordering is assumed, i.e the index of the
most significant part in a variable is equal to 0, while the index corresponding
to the least significant part is the largest one. Here is an example: a 128-bit
value q(128) can be written as

q(128) = r0(64)||r1(64)
= s0(32)||s1(32)||s2(32)||s3(32)
= t0(8)||t1(8)|| . . . ||t14(8)||t15(8)
= u0(1)||u1(1)|| . . . ||u126(1)||u127(1)

High-Level Structure

In this part, we describe the skeleton and the encryption/decryption pro-
cesses for both FOX64 and FOX128. For this purpose, we will follow a
top-down approach.

FOX64/k/r Skeleton The 64-bit version of FOX is the (r − 1)-times iter-
ation of a round function denoted lmor64, followed by the application of a
slightly modified version of lmor64, named lmid64. lmio64 is a function used
during the decryption operation. Formally, lmor64, lmio64 and lmid64 take
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all a 64-bit input x(64), a 64-bit round key rk(64) and return a 64-bit output
y(64):

lmor64, lmio64, lmid64 :

{
{0, 1}64 × {0, 1}64 → {0, 1}64

(x(64), rk(64)) 7→ y(64)

FOX64 Encryption The encryption c(64) by FOX64/k/r of a 64-bit plain-
text p(64) is defined as

c(64) = lmid64(lmor64(. . . (lmor64(p(64), rk0(64)), . . . , rkr−2(64)), rkr−1(64))

where
rk(r·64) = rk0(64)||rk1(64)|| . . . ||rkr−1(64)

is the subkey stream produced by the key schedule algorithm from the key
k(`).

FOX64 Decryption The decryption p(64) by FOX64/k/r of a 64-bit ci-
phertext c(64) is defined as

p(64) = lmid64(lmio64(. . . (lmio64(c(64), rkr−1(64)), . . . , rk1(64)), rk0(64))

where
rk(r·64) = rk0(64)||rk1(64)|| . . . ||rkr−1(64)

is the subkey stream produced by the key schedule algorithm from the key
k(`), as for the encryption.

FOX128/k/r Skeleton Similarly to the definition of FOX64, the 128-bit
version of FOX is the (r − 1)-times iteration of a round function denoted
elmor128, followed by the application of a modified version of elmor128
named elmid128. elmio128 is a function used during the decryption op-
eration. Formally, elmor128, elmio128 and elmid128 all take a 128-bit input
x(128), a 128-bit round key rk(128) and return a 128-bit output y(128):

elmor128, elmio128, elmid128 :

{
{0, 1}128 × {0, 1}128 → {0, 1}128

(x(128), rk(128)) 7→ y(128)

FOX128 Encryption The encryption c(128) by FOX128/k/r of a 128-bit
plaintext p(128) is defined as

c(128) =

elmid128(elmor128(. . . (elmor128(p(128), rk0(128)), . . . , rkr−2(128)), rkr−1(128))

where
rk(r·128) = rk0(128)||rk1(128)|| . . . ||rkr−1(128)

is the subkey stream produced by the key schedule algorithm from the key
k(`).
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xl(32) xr(32)

yl(32) yr(32)

rk(64)

or

f32

Figure 4.13: lmor64 Round Function

FOX128 Decryption The decryption p(128) by FOX128/k/r of a 128-bit
ciphertext c(128) is defined as

p(128) =

elmid128(elmio128(. . . (elmio128(C(128), rkr−1(128)), . . . , rk1(128)), rk0(128))

where
rk(r·128) = rk0(128)||rk1(128)|| . . . ||rkr−1(128)

is the subkey stream produced by the key schedule algorithm from the key
k(`), as for the encryption operation.

Internal Functions

In this part, we describe formally all the functions used internally in the
core of both algorithms FOX64/k/r and FOX128/k/r.

Definitions of lmor64, lmid64, lmio64 In the 64-bit version of the al-
gorithm, one uses three slightly different round functions. The first one,
lmor64, illustrated in Fig. 4.13, is built as a Lai-Massey scheme combined
with an orthomorphism8 or. This function transforms a 64-bit input x(64)

8An orthomorphism o on a group (G, +) is a permutation x 7→ o(x) on G such that
x 7→ o(x) − x is also a permutation.
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or or

xll(32) xrr(32)xlr(32) xrl(32)

f64

yll(32) ylr(32) yrl(32) yrr(32)

rk(128)

Figure 4.14: Round function elmor128

split in two parts x(64) = xl(32)||xr(32) and a 64-bit round key rk(64) in a
64-bit output y(64) = yl(32)||yr(32) as follows:

y(64) = yl(32)||yr(32) = lmor64
(
xr(32)||xr(32)

)

= or
(
xl(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

)) ∣∣∣∣
(
xr(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

))

The lmid64 function is a slightly modified version of lmor64, namely it is the
same one without the orthomorphism or:

y(64) = yl(32)||yr(32) = lmid64
(
xl(32)||xr(32)

)

=
(
xl(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

)) ∣∣∣∣
(
xr(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

))

Finally, lmio64 is defined by

y(64) = yl(32)||yr(32) = lmio64
(
xl(32)||xr(32)

)

= io
(
xl(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

)) ∣∣∣∣
(
xr(32) ⊕ f32

(
xl(32) ⊕ xr(32), rk(64)

))

where io is the inverse of the orthormorphism or.
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Definitions of elmor128, elmid128, elmio128 In the 128-bit version of the
algorithm, one uses three slightly different round functions, as in the 64-
bit version. The first one, elmor128, illustrated in Fig. 4.14, is built as
an Extended Lai-Massey scheme combined with two orthomorphisms or.
This function transforms a 128-bit input x(128) split in four parts x(128) =
xll(32)||xlr(32)||xrl(32)||xrr(32) and a 128-bit round key rk(128) in a 128-bit out-
put y(128) = yll(32)||ylr(32)||yrl(32)||yrr(32) as follows:

y(128) = yll(32)||ylr(32)||yrl(32)||yrr(32) = elmor128
(
xll(32)||xlr(32)||xrl(32)||xrr(32)

)

= or
(
xll(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

(
xlr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

or
(
xrl(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

) ∣∣∣
∣∣∣

(
xrr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

)

The elmid128 function is a slightly modified version of elmor128, namely it
is the same one without the orthomorphism or:

y(128) = yll(32)||ylr(32)||yrl(32)||yrr(32) = elmid128
(
xll(32)||xlr(32)||xrl(32)||xrr(32)

)

=
(
xll(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

(
xlr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

(
xrl(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

) ∣∣∣
∣∣∣

(
xrr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

)

Finally, elmio128 is defined by

y(128) = yll(32)||ylr(32)||yrl(32)||yrr(32) = elmio128
(
xll(32)||xlr(32)||xrl(32)||xrr(32)

)

= io
(
xll(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

(
xlr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
l(32)

) ∣∣∣
∣∣∣

io
(
xrl(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

) ∣∣∣
∣∣∣

(
xrr(32) ⊕ f64

(
(xll(32) ⊕ xlr(32))||(xrl(32) ⊕ xrr(32)), rk(128)

)
r(32)

)

Definitions of or and io The orthomorphism or is a function taking
a 32-bit input x(32) = xl(16)||xr(16) and returning a 32-bit output y(32) =
yl(16)||yr(16). It is defined as

yl(16)||yr(16) = or
(
xl(16)||xr(16)

)
= xr(16)||

(
xl(16) ⊕ xr(16)

)
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mu4

y0(8) y1(8) y2(8) y3(8)

sbox sbox sbox sbox

sbox sbox sbox sbox

x0(8) x1(8) x2(8) x3(8)

rk0(32)

rk1(32)

rk0(32)

Figure 4.15: Function f32

or is in fact a one-round Feistel scheme with the identity function as round
function. The inverse function of or, denoted io, is defined as

yl(16)||yr(16) = io
(
xl(32)||xr(32)

)
=
(
xl(16) ⊕ xr(16)

)
||xl(16)

Definition of f32 The function f32 builds the core of FOX64/k/r. It is
built of three main parts: a substitution part, denoted sigma4, a diffusion
part, denoted mu4, and a round key addition part (see Fig. 4.15). Formally,
the f32 function takes a 32-bit input x(32), a 64-bit round key rk(64) =
rk0(32)||rk1(32) and returns a 32-bit output y(32). The f32 function is then
formally defined as

y(32) = f32
(
x(32), rk(64)

)

= sigma4(mu4(sigma4(x(32) ⊕ rk0(32)))⊕ rk1(32))⊕ rk0(32)

Definition of f64 The function f64 builds the core of FOX128/k/r. It is
built of three main parts: a substitution part, denoted sigma8, a diffusion
part, denoted mu8, and a round key addition part (see Fig. 4.16). Formally,
the f64 function takes a 64-bit input x(64), a 128-bit round key rk(128) =
rk0(64)||rk1(64) and returns a 64-bit output y(64). The f64 function is then
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x4(8)x0(8)

sbox sbox sbox sbox

sbox sbox sbox sbox

y0(8) y1(8) y2(8) y3(8)

sbox sbox sbox sbox

sbox sbox sbox sbox

x1(8) x2(8) x3(8)

mu8

y4(8) y5(8) y6(8) y7(8)

x7(8)x6(8)x5(8)

rk0(64)

rk0(64)

rk1(64)

Figure 4.16: Function f64

defined as

y(64) = f64
(
x(64), rk(128)

)

= sigma8(mu8(sigma8(x(64) ⊕ rk0(64)))⊕ rk1(64))⊕ rk0(64)

Definition of sigma4, sigma8 and sbox The function sigma4 takes a 32-
bit input x(32) = x0(8)||x1(8)||x2(8)||x3(8) and returns a 32-bit output y(32).
It is defined as

y(32) = sigma4
(
x0(8)||x1(8)||x2(8)||x3(8)

)

= sbox(x0(8))||sbox(x1(8))||sbox(x2(8))||sbox(x3(8))

The function sigma8 takes a 64-bit input

x(64) = x0(8)||x1(8)||x2(8)||x3(8)||x4(8)||x5(8)||x6(8)||x7(8)

and returns a 64-bit output y(64). It is defined as

y(64) = sigma8
(
x0(8)||x1(8)||x2(8)||x3(8)||x4(8)||x5(8)||x6(8)||x7(8)

)

= sbox(x0(8))||sbox(x1(8))||sbox(x2(8))||sbox(x3(8))||
sbox(x4(8))||sbox(x5(8))||sbox(x6(8))||sbox(x7(8))

Finally, the sbox function is the lookup-up table defined in Fig. 4.17. We
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 5D DE 00 B7 D3 CA 3C 0D C3 F8 CB 8D 76 89 AA 12

1. 88 22 4F DB 6D 47 E4 4C 78 9A 49 93 C4 C0 86 13

2. A9 20 53 1C 4E CF 35 39 B4 A1 54 64 03 C7 85 5C

3. 5B CD D8 72 96 42 B8 E1 A2 60 EF BD 02 AF 8C 73

4. 7C 7F 5E F9 65 E6 EB AD 5A A5 79 8E 15 30 EC A4

5. C2 3E E0 74 51 FB 2D 6E 94 4D 55 34 AE 52 7E 9D

6. 4A F7 80 F0 D0 90 A7 E8 9F 50 D5 D1 98 CC A0 17

7. F4 B6 C1 28 5F 26 01 AB 25 38 82 7D 48 FC 1B CE

8. 3F 6B E2 67 66 43 59 19 84 3D F5 2F C9 BC D9 95

9. 29 41 DA 1A B0 E9 69 D2 7B D7 11 9B 33 8A 23 09

A. D4 71 44 68 6F F2 0E DF 87 DC 83 18 6A EE 99 81

B. 62 36 2E 7A FE 45 9C 75 91 0C 0F E7 F6 14 63 1D

C. 0B 8B B3 F3 B2 3B 08 4B 10 A6 32 B9 A8 92 F1 56

D. DD 21 BF 04 BE D6 FD 77 EA 3A C8 8F 57 1E FA 2B

E. 58 C5 27 AC E3 ED 97 BB 46 05 40 31 E5 37 2C 9E

F. 0A B1 B5 06 6C 1F A3 2A 70 FF BA 07 24 16 C6 61

Figure 4.17: Mapping sbox

read this table as follows: to compute sbox(4C), one selects first the row
named 4. (i.e. the fifth row), and then one selects the column named .C (i.e.
the thirteenth column) and we get finally

sbox(4C) = 15

Definition of mu4 The diffusive part of f32 is a linear (4, 4)-multipermu-
tation defined on GF(28). Formally, it is a function taking a 32-bit input

x(32) = x0(8)||x1(8)||x2(8)||x3(8)

and returning a 32-bit output

y(32) = y0(8)||y1(8)||y2(8)||y3(8)

and defined by




y0(8)

y1(8)

y2(8)

y3(8)


 =




1 1 1 α
1 c α 1
c α 1 1
α 1 c 1


×




x0(8)

x1(8)

x2(8)

x3(8)




where

c = α−1 + 1 = α7 + α6 + α5 + α4 + α3 + α2 + 1

All the additions and multiplications are defined in GF(28) using the repre-
sentation described in §4.3.2.
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Definition of mu8 The diffusive part of f64 is a linear (8, 8)-multipermu-
tation defined on GF(28). Formally, it is a function taking a 64-bit input

x(64) = x0(8)||x1(8)||x2(8)||x3(8)||x4(8)||x5(8)||x6(8)||x7(8)

and returning a 64-bit output

y(64) = y0(8)||y1(8)||y2(8)||y3(8)||y4(8)||y5(8)||y6(8)||y7(8)

f64 is defined as




y0(8)

y1(8)

y2(8)

y3(8)

y4(8)

y5(8)

y6(8)

y7(8)




=




1 1 1 1 1 1 1 a
1 a b c d e f 1
a b c d e f 1 1
b c d e f 1 a 1
c d e f 1 a b 1
d e f 1 a b c 1
e f 1 a b c d 1
f 1 a b c d e 1




×




x0(8)

x1(8)

x2(8)

x3(8)

x4(8)

x5(8)

x6(8)

x7(8)




where

a = α+ 1

b = α−1 + α−2 = α7 + α

c = α

d = α2

e = α−1 = α7 + α6 + α5 + α4 + α3 + α2

f = α−2 = α6 + α5 + α4 + α3 + α2 + α

All the additions and multiplications are defined in GF(28) using the repre-
sentation described in §4.3.2.

Key-Schedule Algorithms

The key schedule is the algorithm which derives the subkey material

rk(r·64) = rk0(64)||rk1(64)|| . . . ||rkr−1(64)

and

rk(r·128) = rk0(128)||rk1(128)|| . . . ||rkr−1(128)

(for FOX64 and FOX128, respectively) from the key k(`).
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Design Block size Key size Key-Schedule Version ek

FOX64 64 0 ≤ ` ≤ 128 KS64 128

FOX64 64 136 ≤ ` ≤ 256 KS64h 256

FOX128 128 0 ≤ ` ≤ 256 KS128 256

Figure 4.18: Key-Schedule Algorithms Characteristics

General Overview A FOX key k(`) must have a bit-length ` such that
0 ≤ ` ≤ 256, and ` must be a multiple of 8. Depending on the key length
and the block size, a member of the FOX block cipher family may use one
among three different key-schedule algorithm versions, denoted respectively
KS64, KS64h and KS128. A constant, ek, depends on these values as well.
The table in Fig. 4.18 defines precisely the relation between the key size, the
block size, the constant ek and the key-schedule algorithm version.

The three different versions of the key-schedule algorithm are constituted
of four main parts: a padding part, denoted P, expanding k(`) into ek bits,
a mixing part, denoted M, a diversification part, denoted D, whose core
consists mainly in a linear feedback shift register denoted LFSR, and finally,
a non-linear part, denoted NLx (see Fig. 4.19 and Alg. 4.1 for a high-level
overview of the key-schedule algorithm design). As outlined above, the key-
schedule algorithm definition depends on a the number of rounds r, on the
key length ` and on the cipher (FOX64 or FOX128). In fact, NLx is the
only part which differs between the different versions, and we will denote
the three variants NL64, NL64h and NL128.

/* Preprocessing */

pkey ← P(k)
mkey ← M(pkey)
/* Initialization of the loop */

i← 1
/* Loop */

while i ≤ r do
dkey ← D(mkey, i, r)
Output rki−1(x) ← NLx(dkey)
i← i+ 1

end while

Algorithm 4.1: Key-Schedule Algorithm (High-Level Description)

Definition of KS64 This key-schedule algorithm is designed to be used
by FOX64 with keys smaller or equal to 128 bits. It takes the following
parameters as input: a key k of length ` bits, with 0 ≤ ` ≤ 128 and a
number of rounds r. It returns in output r 64-bit subkeys. KS64 is formally
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Figure 4.19: Key-Schedule Algorithm (High-Level Overview)

defined in Alg. 4.2.

Definition of KS64h This key schedule algorithm is designed to be used
by FOX64 with keys larger than 128 bits. It takes the following parameters
as input: a key k of length ` bits, with 136 ≤ ` ≤ 256 and a number of
rounds r. It returns in output r 64-bit subkeys. KS64h is formally defined
in Alg. 4.3.

Definition of KS128 This key schedule algorithm is designed to be used
by FOX128. It takes the following parameters as input: a key k of length
` bits, with 0 ≤ ` ≤ 256 and a number of rounds r. It returns in output r
128-bit subkeys. KS128 is formally defined in Alg. 4.4.

Definition of P The P-part, taking ek and ` as input, is basically a func-
tion expanding a bit string by ek−`

8 bytes. More precisely, then P concate-
nates the input key k with the first ek − ` bits of the constant pad, giving
pkey as output. The P function is defined formally in Alg. 4.5. The pad
constant value is defined in the following section.

Definition of pad The constant pad is defined as being the first 256 bits
of the hexadecimal development of e− 2:

e− 2 =
+∞∑

n=0

1

n!
− 2
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/* Preprocessing */

if ` < ek then
pkey = P(k)
mkey = M(pkey)

else
pkey = k
mkey = pkey

end if
/* Initialization of the loop */

i = 1
/* Loop */

while i ≤ r do
dkey = D(mkey, i, r)
Output rki−1(64) = NL64(dkey)
i = i+ 1

end while

Algorithm 4.2: Key-Schedule Algorithm KS64

/* Preprocessing */

if ` < ek then
pkey = P(k)
mkey = M(pkey)

else
pkey = k
mkey = pkey

end if
/* Initialization of the loop */

i = 1
/* Loop */

while i ≤ r do
dkey = D(mkey, i, r)
Output rki−1(64) = NL64h(dkey)
i = i+ 1

end while

Algorithm 4.3: Key-Schedule Algorithm KS64h
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/* Preprocessing */

if ` < ek then
pkey = P(k)
mkey = M(pkey)

else
pkey = k
mkey = pkey

end if
/* Initialization of the loop */

i = 1
/* Loop */

while i ≤ r do
dkey = D(mkey, i, r)
Output rki−1(128) = NL128(dkey)
i = i+ 1

end while

Algorithm 4.4: Key-Schedule Algorithm KS128

Output pkey = k||pad[0...ek−`−1]

Algorithm 4.5: P-Part

Thus, it is the concatenation of the four following 64-bit constants

pad = 0xB7E151628AED2A6A ||
0xBF7158809CF4F3C7 ||
0x62E7160F38B4DA56 ||
0xA784D9045190CFEF

Definition of M The M-part is used to mix the padded key pkey, such
that the constant words are mixed uo by using the randomness provided by
the key. This is done with help of a Fibonacci recursion. It takes as input a
key pkey with length ek (expressed in bits). More formally, the padded key
pkey is seen as an array of ek

8 bytes pkeyi(8), 0 ≤ i ≤ ek
8 − 1, and is mixed

according to

mkeyi(8) = pkeyi(8) ⊕
(
mkeyi−1(8) +mkeyi−2(8) mod 28

)
0 ≤ i ≤ ek

8
− 1

with the convention that

mkey−2(8) = 0x6A and mkey−1(8) = 0x76

Note here that + denotes the addition performed modulo 28 while ⊕ denotes
the addition in GF

(
28
)
, which is actually a XOR operation.



— 185 —

Definition of D The D-part is a diversification part. It takes a key mkey
having a length in bits equal to ek, the total round number r, and the
current round number i, with 1 ≤ i ≤ r; it modifies mkey with help of the
output of a 24-bit Linear Shift Feedback Register (LFSR) denoted LFSR.
More precisely, mkey is seen as an array of

⌊
ek
24

⌋
24-bit values mkeyj(24),

with 0 ≤ j ≤
⌊
ek
24

⌋
− 1 concatenated with one residue byte mkeyrb(8) (if

ek = 128) or two residue bytes mkeyrb(16) (if ek = 256), and is modified
according to

dkeyj(24) = mkeyj(24) ⊕ LFSR

(
(i− 1) ·

⌈
ek

24

⌉
+ j, r

)

for 0 ≤ j ≤
⌊
ek
24

⌋
−1; the dkeyrb(8) value (dkeyrb(16)) is obtained by XORing

the most 8 (16) significant bits of LFSR((i−1)·
⌈
ek
24

⌉
+
⌊
ek
24

⌋
, r) withmkeyrb(8)

(mkeyrb(16)), respectively. The remaining 16 (8) bits of the LFSR routine
output are discarded.

Definition of LFSR The diversification part D needs a stream of pseudo-
random values; it is produced by a 24-bit linear feedback shift register,
denoted LFSR. This algorithm takes two inputs, the total number of rounds
r and a number of preliminary clocking c. It is based on the following
primitive polynomial of degree 24 over GF(2).

Definition 4.3.3 (Primitive Polynomial PKS(ξ)). The polynomial rep-
resenting GF

(
224
)

in the FOX block cipher family is the primitive polynomial
over GF (2) defined by

PKS(ξ) = ξ24 + ξ4 + ξ3 + ξ + 1

The register is initially seeded with the value 0x6A||r(8)||r(8), where r(8) is
expressed as an 8-bit value, and r(8) is its bitwise complemented version
(i.e. r(8) = r(8) ⊕ 0xFF). LSFR is described formally in Alg. 4.6.

Definition of NL64 The NL64-part takes a single input: the 128-bit value
dkey corresponding to the current round. The dkey value passes through
a substitution layer (made of four parallel sigma4 functions), a diffusion
layer (made of four parallel mu4 functions) and a mixing layer called mix64.
Then, the constant pad[0...127] is XORed and the result is flipped if and only
if k = ek. The result passes through a second substitution layer, it is hashed
down to 64 bits and the resulting value is encrypted first with a lmor64 round
function, where the subkey is the left half of the dkey value and second by
a lmid64 function, where the subkey is the right half of dkey. The resulting
value is defined to be the 64-bit round key. Fig. 4.20 illustrates the NL64
process and Alg. 4.7 describes it formally.
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/* Initialization */

reg = 0x6A||r||r
/* Pre-Clocking */

p = 0
while p < c do
p = p+ 1
if (reg AND 0x800000) 6= 0x000000 then
reg = (reg � 1)⊕ 0x00001B

else
reg = (reg � 1)

end if
end while
Output reg

Algorithm 4.6: LFSR Algorithm

t0(32) ||t1(32)||t2(32)||t3(32)=dkey
t0(32) ||t1(32)||t2(32)||t3(32)=sigma4(t0(32))||sigma4(t1(32))||sigma4(t2(32))||sigma4(t3(32))

t0(32) ||t1(32)||t2(32)||t3(32)=mu4(t0(32))||mu4(t1(32))||mu4(t2(32))||mu4(t3(32))

t0(32) ||t1(32)||t2(32)||t3(32)=mix64(t0(32) ||t1(32)||t2(32)||t3(32))
t0(32) ||t1(32)||t2(32)||t3(32)=(t0(32) ||t1(32)||t2(32)||t3(32))⊕pad[0..127]

if k = ek then
t0(32) ||t1(32)||t2(32)||t3(32)=t0(32) ||t1(32)||t2(32)||t3(32)

end if
t0(32) ||t1(32)||t2(32)||t3(32)=sigma4(t0(32))||sigma4(t1(32))||sigma4(t2(32))||sigma4(t3(32))

t0(32) ||t1(32)=(t0(32)⊕t2(32))||(t1(32)⊕t3(32))
t0(32) ||t1(32)=lmor64(t0(32) ||t1(32),dkey[0...63])

t0(32) ||t1(32)=lmid64(t0(32) ||t1(32),dkey[64...127])

Output t0(32) ||t1(32) as round subkey.

Algorithm 4.7: NL64 Part
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Figure 4.20: NL64 Part
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Definition of NL64h The NL64h-part takes a single input: the 256-bit
value dkey corresponding to the current round. The dkey value passes
through a substitution layer (made of eight parallel sigma4 functions), a
diffusion layer (made of eight parallel mu4 functions) and a mixing layer
called mix64h. Then, the constant pad is XORed and the result is flipped if
and only if k = ek. The result passes through a second substitution layer,
it is hashed down to 64 bits and the resulting value is encrypted first with
three lmor64 round functions, where the respective subkeys are the three
left quarters of the dkey value and secondly by a lmid64 function, where the
subkey is the rightmost quarter of dkey. The resulting value is defined to
be the 64-bit round key. Fig. 4.21 illustrates the NL64h process and Alg.
4.8 describes it formally.

/* Initialization */

t0(32) ||t1(32)||t2(32)||t3(32)||t4(32) ||t5(32)||t6(32)||t7(32)=dkey
/* Substitution Layer */

t0(32) ||t1(32)||t2(32)||t3(32)=sigma4(t0(32))||sigma4(t1(32))||sigma4(t2(32))||sigma4(t3(32))

t4(32) ||t5(32)||t6(32)||t7(32)=sigma4(t4(32))||sigma4(t5(32))||sigma4(t6(32))||sigma4(t7(32))

/* Diffusion Layer */

t0(32) ||t1(32)||t2(32)||t3(32)=mu4(t0(32))||mu4(t1(32))||mu4(t2(32))||mu4(t3(32))

t4(32) ||t5(32)||t6(32)||t7(32)=mu4(t4(32))||mu4(t5(32))||mu4(t6(32))||mu4(t7(32))

t0(32) ||t1(32)||t2(32)||t3(32)||t4(32) ||t5(32)||t6(32)||t7(32)=
mix64h(t0(32) ||t1(32)||t2(32)||t3(32)||t4(32)||t5(32)||t6(32)||t7(32))

t0(32) ||t1(32)||t2(32)||t3(32)||t4(32) ||t5(32)||t6(32)||t7(32)=
(t0(32) ||t1(32)||t2(32) ||t3(32)||t4(32)||t5(32)||t6(32)||t7(32))⊕pad

if k = ek then
t0(32) ||t1(32)||t2(32)||t3(32)||t4(32)||t5(32) ||t6(32)||t7(32)=
t0(32) ||t1(32)||t2(32)||t3(32)||t4(32)||t5(32) ||t6(32)||t7(32)

end if
/* Substitution Layer */

t0(32) ||t1(32)||t2(32)||t3(32)=sigma4(t0(32))||sigma4(t1(32))||sigma4(t2(32))||sigma4(t3(32))

t4(32) ||t5(32)||t6(32)||t7(32)=sigma4(t4(32))||sigma4(t5(32))||sigma4(t6(32))||sigma4(t7(32))

/* Hashing Layer */

t0(32) ||t1(32)||t2(32)||t3(32)=(t0(32)⊕t1(32))||(t2(32)⊕t3(32))||(t4(32)⊕t5(32))||(t6(32)⊕t7(32))
t0(32) ||t1(32)=(t0(32)⊕t2(32))||(t1(32)⊕t3(32))
/* Encryption Layer */

t0(32) ||t1(32)=lmor64(t0(32) ||t1(32),dkey[0...63])

t0(32) ||t1(32)=lmor64(t0(32) ||t1(32),dkey[64...127])

t0(32) ||t1(32)=lmor64(t0(32) ||t1(32),dkey[128...191])

t0(32) ||t1(32)=lmid64(t0(32) ||t1(32),dkey[192...256])

Output t0(32)||t1(32) as round subkey.

Algorithm 4.8: NL64h Part



— 189 —

mu4 mu4 mu4 mu4 mu4 mu4 mu4 mu4

condflip

lmor64

lmor64

lmor64

lmid64

sigma4 sigma4 sigma4 sigma4 sigma4 sigma4 sigma4 sigma4

sigma4 sigma4 sigma4 sigma4 sigma4 sigma4 sigma4 sigma4

DKEY

RKEY

Figure 4.21: NL64h Part
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Definition of NL128 The NL128-part takes a single different input: the
256-bit value dkey corresponding to the current round. Basically, the dkey
value passes through a substitution layer (made of four parallel sigma8 func-
tions), a diffusion layer (made of four parallel mu8 functions) and a mixing
layer called mix128. Then, the constant pad is XORed and the result is
flipped if and only if k = ek. The result passes through a second substitu-
tion layer, it is hashed down to 128 bits and the resulting value is encrypted
first with a elmor128 round function, where the subkey is the left half of the
dkey value and second by a elmid128 function, where the subkey is the right
half of dkey. The resulting value is defined to be the 128-bit round key. Fig.
4.22 illustrates the NL128 process and Alg. 4.9 describes it formally.

t0(64) ||t1(64)||t2(64)||t3(64)=dkey
t0(64) ||t1(64)||t2(64)||t3(64)=sigma8(t0(64))||sigma8(t1(64))||sigma8(t2(64))||sigma8(t3(64))

t0(64) ||t1(64)||t2(64)||t3(64)=mu8(t0(64))||mu8(t1(64))||mu8(t2(64))||mu8(t3(64))

t0(64) ||t1(64)||t2(64)||t3(64)=mix128(t0(64) ||t1(64)||t2(64)||t3(64))
t0(64) ||t1(64)||t2(64)||t3(64)=(t0(64) ||t1(64)||t2(64)||t3(64))⊕pad

if k = ek then
t0(64) ||t1(64)||t2(64)||t3(64)=t0(64) ||t1(64)||t2(64)||t3(64)

end if
t0(64) ||t1(64)||t2(64)||t3(64)=sigma8(t0(64))||sigma8(t1(64))||sigma8(t2(64))||sigma8(t3(64))

t0(64) ||t1(64)=(t0(64)⊕t2(64))||(t1(64)⊕t3(64))
t0(64) ||t1(64)=elmor128(t0(64) ||t1(64),dkey[128...255])

t0(64) ||t1(64)=elmid128(t0(64) ||t1(64),dkey[0...127])

Output t0(64)||t1(64) as round subkey.

Algorithm 4.9: NL128 Part

Definition of mix64 Given an input vector of four 32-bit values, denoted

x = x0(32)||x1(32)||x2(32)||x3(32)

the mix64 function consists in processing it by the following relations, re-
sulting in an output vector denoted y = y0(32)||y1(32)||y2(32)||y3(32). More
formally, mix64 is defined as

y0(32) = x1(32) ⊕ x2(32) ⊕ x3(32)

y1(32) = x0(32) ⊕ x2(32) ⊕ x3(32)

y2(32) = x0(32) ⊕ x1(32) ⊕ x3(32)

y3(32) = x0(32) ⊕ x1(32) ⊕ x2(32)

Definition of mix64h Given an input vector of eight 32-bit values, denoted

x = x0(32)||x1(32)||x2(32)||x3(32)||x4(32)||x5(32)||x6(32)||x7(32)
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the mix64h function consists in processing it by the following relations, re-
sulting in an output vector denoted

y = y0(32)||y1(32)||y2(32)||y3(32)||y4(32)||y5(32)||y6(32)||y7(32)

More formally, mix64h is defined as

y0(32) = x2(32) ⊕ x4(32) ⊕ x6(32)

y1(32) = x3(32) ⊕ x5(32) ⊕ x7(32)

y2(32) = x0(32) ⊕ x4(32) ⊕ x6(32)

y3(32) = x1(32) ⊕ x5(32) ⊕ x7(32)

y4(32) = x0(32) ⊕ x2(32) ⊕ x6(32)

y5(32) = x1(32) ⊕ x3(32) ⊕ x7(32)

y6(32) = x0(32) ⊕ x2(32) ⊕ x4(32)

y7(32) = x1(32) ⊕ x3(32) ⊕ x5(32)

Definition of mix128 Given an input vector of four 64-bit values, denoted
x = x0(64)||x1(64)||x2(64)||x3(64), the mix64 function consists in processing
it by the following relations, resulting in an output vector denoted y =
y0(64)||y1(64)||y2(64)||y3(64). More formally, mix128 is defined as

y0(64) = x1(64) ⊕ x2(64) ⊕ x3(64)

y1(64) = x0(64) ⊕ x2(64) ⊕ x3(64)

y2(64) = x0(64) ⊕ x1(64) ⊕ x3(64)

y3(64) = x0(64) ⊕ x1(64) ⊕ x2(64)

4.3.3 Rationales

In this part, we describe several rationales about important components
building the FOX family of block ciphers.

Non-Linear Mapping sbox

As outlined earlier, our primary goal was to avoid a purely algebraic con-
struction for the S-box9; a secondary goal was the possibility to implement it
in a very efficient way on hardware using ASIC or FPGA technologies. The
sbox function is a non-linear bijective mapping on 8-bit values. It consists of
a Lai-Massey scheme with 3 rounds taking three different substitution boxes
as round function where the orthormorphism of the third round is omitted;
these “small” S-boxes are denoted S1, S2 and S3, and their content is given in

9A drawback of this choice is that it makes the study of “scaled-down” versions of the
cipher difficult, if not impossible.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) 2 5 1 9 E A C 8 6 4 7 F D B 0 3

S2(x) B 4 1 F 0 3 E D A 8 7 5 C 2 9 6

S3(x) D A B 1 4 3 8 9 5 7 2 C F 0 6 E

Figure 4.23: The three small S-boxes of FOX.

Fig. 4.23. The orthomorphism or4 used in the Lai-Massey scheme is a single
round of a 4-bit Feistel scheme with the identity function as round function.
We describe now the generation process of the sbox transformation. First
a set of three different candidates for small substitution boxes, each having
a LPmax and a DPmax (as defined in §2.3.3) smaller than 2−2 were pseudo-
randomly chosen. Then, the candidate sbox mapping was evaluated and
tested regarding its LPmax and DPmax values until a good candidate was
found. The chosen sbox satisfies DPsbox

max = LPsbox
max = 2−4 and its algebraic

degree is equal to 6.

Linear Multipermutations mu4/mu8

Both mu4 and mu8 are linear multipermutations. This kind of construction
was early recognized as being optimal for which regards its diffusion prop-
erties (see [287,311] and the discussion in §4.1.3, page 150). As explained in
§4.2, not all constructions are very efficient to implement, especially on low-
end smartcard, which have usually very few available memory and computa-
tional power. We have thus chosen a permuted version of the circulating-like
construction described as M8 for the structure of the matrix (see page 167).

Furthermore, in order to be efficiently implementable, the elements of
the matrix, which are elements of GF(28), should be efficient to multiply to.
As the only really efficient operations are the addition, the multiplication
by α and the division by α. Note that α7 +α = α−1 +α−2, α7 +α6 + α5 +
α4 + α3 + α2 = α−1, and that α6 + α5 + α4 + α3 + α2 + α = α−2.

Key-Schedule Algorithms

The FOX key-schedule algorithms were designed with several rationales in
mind: first, the function, which takes a key k and the round number r
and returns r subkeys should be a cryptographic pseudorandom, collision
resistant and one-way function. Second, the sequence of subkeys should
be generated in any direction without any complexity penalty. Third, all
the bytes of mkey should be randomized even when the key size is strictly
smaller than ek. Finally, the key-schedule algorithm should resist related-
cipher attacks as described by Wu in [332] (see §2.3.6 as well), since FOX can
possibly use different number of rounds.
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We are convinced that “strong” key-schedule algorithms have significant
advantages in terms of security, even if the price to pay is a smaller key
agility, as discussed earlier. In the case of FOX, we believe that the time
needed to compute the subkeys, which is about equal to the time needed to
encrypt 6 blocks of data (in the case of FOX64 with keys strictly larger than
128 bit, it takes the time to encrypt 12 blocks of data) remains acceptable
in all kinds of applications. During the AES effort, it was suggested that an
example of extreme case would be a high-speed network switch having to
maintain a million of contexts and switching bewteen them every four blocks
of data. Under such extreme constraints, one can still keep in memory one
million fully expanded keys at a negligible cost.

The second central property of FOX key-schedule algorithms is ensured
by the LFSR construction. As it is possible to back-clock it easily, the sub-
key generation process can be computed in the encryption as well as in the
decryption direction with no loss of speed. The third property is ensured by
our “Fibonacci-like” construction (which is a bijective mapping). Further-
more, mkey is expanded by XORing constants depending on r and ek with
no overlap on these constants sequences (this was checked experimentally).
Finally, the fourth property is ensured by the dependency of the subkey se-
quence to the actual round number of the algorithm instance for which the
sequence will be used.

We state now a sequence of properties of the building blocks of the key-
schedule algorithm.

P-Part The goal of the P-part consists in transforming the user-provided
key, which may have any length multiple of 8 smaller or equal than 256, in
a fixed-size value of 128-bit or 256-bit. The chosen padding constant e − 2
was checked regarding the following property.

Lemma 4.3.1. It is impossible to find two values of k with a length strictly
smaller than ek bits which lead to the same value of pkey.

Proof. In order for two different inputs to produce the same output dur-
ing the padding operation, one has to concatenate the smaller one with a
padding value which is contained in the one used for the larger input; this
is only possible if the first ` bytes of the padding constant are present in
another location. The lemma follows from the fact that the first byte 0xB7

is unique in the constant.

Note that in order to avoid that a padded key and non-padded key generate
the same subkey sequence, a conditional negation has been incorporated in
the NLx part of the key-schedule algorithm.

M-Part When using small keys, a large part of the key-schedule state is
known to a potential adversary: it is the padding constant. The goal of
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the M-part is hence to mix the entropy on all bytes. The following lemma
insures that, when fed with two different inputs, the M-part will return two
different outputs.

Lemma 4.3.2. The M-part is a permutation.

Proof. The lemma follows directly from the fact that the M-part is an in-
vertible application.

L-Part The goal of the L-part is to diversify the dkey register (which
serves as input for the NLx-part) at each round. The main design goals are
its simplicity and its reversibility: as a LFSR step is equivalent to the multi-
plication by a constant in a finite field, the inverse operation is a division by
the same constant. It is thus possible to evaluate the L in both directions.
It was furthermore checked that the outputs (being 144 or 264 bits) for all
12 ≤ r ≤ 255 and for all round numbers 1 ≤ i ≤ r are unique.

NLx-Part The goal of the NL part is to generate a pseudorandom stream
of data as “cryptographically secure” as possible and as fast as possible; it is
actually the one-way part of the key-schedule. For this, it re-uses the round
functions in its core, and it needs only a few supplementary operations.

4.3.4 Security Foundations

Security Properties of the Lai-Massey Scheme

Although less popular than the Feistel scheme or SPN structures, the Lai-
Massey scheme offers similar (super-) pseudorandomness and decorrelation
inheritance properties, as was demonstrated by Vaudenay [317]. Note that
we will indifferently use the term “Lai-Massey scheme” to denote both ver-
sions, as we can see the Extended Lai-Massey scheme as a Lai-Massey
scheme: we can swap the two inner inputs as in Fig. 4.24, and we note
that the function (x, y) 7→ or32(x)||or32(y) builds an orthomorphism (see
Lem. 4.3.3).

Lemma 4.3.3. The application defined by

{
({0, 1}32)2 → ({0, 1}32)2
(x, y) 7→ (or(x), or(y))

is an orthomorphism, where or(.) is the orthomorphism defined in §4.3.2.

Proof. First, we show that this application is a permutation. This follows
from the fact that the inverse application is given by

(x′, y′) 7→ (io(x′), io(y′))



— 196 —

oror

f64 rk

Figure 4.24: An alternate view of an extended Lai-Massey scheme

and that io is a permutation, too. Now, we have to check that

(x, y) 7→ (or(x)⊕ x, or(y)⊕ y) (4.4)

is also a permutation. This follows easily from the fact that Eq. (4.4) is an
invertible application.

From this point, we will make use of the following notation: given an or-
thomorphism o on a group (G,+) and given r functions f1, f2, . . . , fr on G,
we note an r-rounds Lai-Massey scheme using the r functions and the or-
thomorphism by Λo(f1, . . . , fr). Then the following results are two Luby-
Rackoff-like [191] results on the Lai-Massey scheme. We refer to [317, 320]
for proofs thereof.

Theorem 4.3.1 (Vaudenay). Let f∗1 , f∗2 and f∗3 be three independent ran-
dom functions uniformly distributed on a group (G,+). Let o be an ortho-
morphism on G. For any distinguisher limited to d chosen plaintexts, where
g = |G| denotes the cardinality of the group, between Λo(f∗1 , f

∗
2 , f
∗
3 ) and a

uniformly distributed random permutation c∗, we have

Adv(Λo(f∗1 , f
∗
2 , f
∗
3 ), c∗) ≤ d(d − 1)(g−1 + g−2).
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Theorem 4.3.2 (Vaudenay). If f1, . . . , fr are r ≥ 3 independent random
functions on a group (G,+) of order g such that Adv(fi, f

∗
i ) ≤ ε

2 for any
adaptive distinguisher between fi and f∗i limited to d queries for 1 ≤ i ≤ r
and if o is an orthomorphism on G, we have

Adv(Λo(f1, . . . , fr), c
∗) ≤ 1

2
(3ε + d(d− 1)(2g−1 + g−2))b r

3c.

Basically, the first result proves that the Lai-Massey scheme provides pseu-
dorandomness on three rounds unless the fi’s are weak, like for the Feistel
scheme [102]. Super-pseudorandomness corresponds to cases where a distin-
guisher can query chosen ciphertexts as well; in this scenario, the previous
result holds when we consider Λo(f∗1 , . . . , f

∗
4) with a fourth round. The sec-

ond result proves that the decorrelation bias of the round functions of a
Lai-Massey scheme is inherited by the whole structure: provided the fi’s are
strong, so is the Lai-Massey scheme; in other words, a potential cryptanaly-
sis will not be able to exploit the Lai-Massey’s scheme only, but it will have
to take advantage of weaknesses of the round functions’ internal structure.
We would like to stress out the importance of the orthomorphism o: by
omitting it, it is possible to distinguish a Lai-Massey scheme using pseu-
dorandom functions from a pseudorandom permutation with overwhelming
probability, and this for any number of rounds. Indeed, denoting the input
and the output of a Lai-Massey scheme by xl||xr and yl||yr, respectively, the
following equation holds with probability one:

xl 	 xr = yl 	 yr (4.5)

where 	 denote the inverse of the additive group law used in the scheme.
One should not misinterpret the results in the Luby-Rackoff scenario in

terms of the overall block cipher security: FOX’s round functions are far to
be indistinguishable from random functions, as it is the case of DES round
functions, for instance: the fact that DES is vulnerable to linear and dif-
ferential cryptanalysis does not contradict Luby-Rackoff results. However,
Th. 4.3.1 and Th. 4.3.2 give proper credit to the high-level structure of FOX.

Resistance w/r to Linear and Differential Cryptanalysis

It is possible to prove some important results about the security of both
f32 and f64 functions towards linear and differential cryptanalysis, too. As
these functions may be viewed as classical Substitution-Permutation Network
constructions, we will refer to some well-known results on their resistance
towards linear and differential cryptanalysis proved in [132] by Hong et al.
For the sake of completeness, we recall the framework of consideration and
the results they obtained using it. Then, we apply their result to the round
functions of FOX, and we draw some conclusions about its security towards
linear and differential cryptanalysis in functions of the round number. This
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will help us to fix the minimal number of rounds which results in a sufficient
level of security.

Let Si denote an m × m bijective substitution box, that is a bijection
on {0, 1}m. We consider a standard kSPkSk structure (i.e. the one of FOX’s
round functions) on m× n bit strings, namely a key addition layer, a sub-
stitution layer, a diffusion layer, followed by a second key addition layer,
a substitution layer, and a final key addition layer. We assume that the
substitution layer consists of the parallel evaluation of n m×m S-boxes Si
for 1 ≤ i ≤ n, that the diffusion layer can be expressed as an invertible n×n
MDS matrix M with coefficients in GF(2m), and that the key addition layer
consists of XORing a mn-bit subkey to the state. Let us furthermore denote
by

πS
DP = max

1≤i≤n
DPSi

max and πS
LP = max

1≤i≤n
LPSi

max

the respective maximal differential and linear probabilities we can find in
the S-boxes Si, according to the terminology of Def. 2.3.2 and Def. 2.3.9,
respectively. Finally, let us denote by

β = B(M) = n+ 1

the branch number of the diffusion layer M (according to Def. 4.1.5), which is
defined to be maximal. Then the following theorem due to Hong. et al. [132]
states upper bounds on the maximal differential and linear hull probabilities,
respectively.

Theorem 4.3.3 (Hong et al. [132]). In a kSPkSk structure, if the round
subkeys are statistically independent and uniformly distributed, then the
probability of each differential with respect to ⊕ is upper bounded by

(
πS

DP

)β−1
,

while the probability of each linear hull is upper bounded by
(
πS

LP

)β−1
.

In the case of FOX64, since DPsbox
max = LPsbox

max = 2−4, since mu4 (resp. mu8)
has a branch number equal to five (resp. nine), and since one can assume
that the subkeys are uniformly distributed and statistically independent,
due to the nature of the key-schedule algorithm, one can reasonably apply
Th. 4.3.3 and get the following result.

Theorem 4.3.4. If the round subkeys are statistically independent and uni-
formly distributed, then the following bounds hold:

LPf32
max = DPf32

max ≤ 2−16,

and
LPf64

max = DPf64
max ≤ 2−32.
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Let us now focus on embedding the round functions in the skeletons. For the
sake of clarity10, we prove now some interesting properties of an Extended
Lai-Massey scheme regarding differential and linear characteristics.

Lemma 4.3.4. In the Extended Lai-Massey scheme as defined in §4.3.2,
any differential characteristic on two rounds must involve at least one f64-
function.

Proof. We follow a top-down approach. If we stack up two rounds of an
Extended Lai-Massey scheme (see Fig. 4.25 for a detailed illustration of
one round) and we force a differential characteristic at the input of the first
f64-function to be equal to 0, then a differential characteristic at the input
of the two rounds must have the form (a, b, a, b, c, d, c, d) with a, b, c, d ∈
{0, 1}16 and a, b, c, d are not all equal to 0. At the end of the first round, the
differential characteristic sounds (b, a⊕ b, a, b, d, c ⊕ d, c, d). At the input of
the second f64-function, the differential characteristic is equal to (a⊕b, a, c⊕
d, c). We proceed by contraposition. If the input of the second f64-function
is equal to zero, we have a = c = 0. As a⊕ b and c⊕ d must be both equal
to 0, the we conclude that a = b = c = d = 0. This is a contradiction to our
primary assumption about a, b, c and d, and the theorem follows.

Lemma 4.3.5. In the Extended Lai-Massey scheme as defined in Fig. 4.3.2,
any linear characteristic on two rounds must involve at least one function
f64.

Proof. We follow a bottom-up approach. By forcing a linear characteristic
to be equal to (0, 0, 0, 0, 0, 0, 0, 0) at the end of the second f64-function, we
note that the output linear characteristic must have the form (a, a⊕ d, a ⊕
d, d, b, b⊕c, b⊕c, c) with a, b, c, d ∈ {0, 1}16 and a, b, c, d not all equal to 0. If
we consider now the first f64-function, we note that a linear characteristic at
its output must have the form (d, a⊕d, b, b⊕c), which implies that a = b = 0
and then that c = d = 0, which is a contradiction to our assumption, and
the theorem follows.

By considering Th. 4.3.3, Lem. 4.3.4, and Lem. 4.3.5 together, we have thus
the following result.

Theorem 4.3.5. The differential (resp. linear) probability of any single-
path characteristic in FOX64/k/r is upper bounded by (DPsbox

max)
2r (resp.

(LPsbox
max)

2r). Similarly, the bounds are (DPsbox
max)

4r (resp. (LPsbox
max)

4r) for
FOX128/k/r.

10These properties are actually trivial to prove in the case of a simple Lai-Massey
scheme, and as discussed in §4.3.4, the Extended Lai-Massey scheme can be viewed as a
simple Lai-Massey scheme.
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f64

Figure 4.25: A detailed view of an extended Lai-Massey scheme

Note that it is a kind of “hybrid” proof of security towards linear and dif-
ferential cryptanalysis, as we have considered differential and linear hulls in
the round functions, but characteristics in the high-level schemes. Thus, we
have in reality slightly stronger results that the ones stated in Th. 4.3.5.
Finally, we conclude that it is impossible to find any useful differential or
linear characteristic after 8 rounds for both FOX64 and FOX128. Hence, a
minimal number of 12 rounds provides a minimal safety margin.

Resistance Towards Other Attacks

In this part, we discuss the resistance of FOX towards various types of at-
tacks.

Statistical Attacks Due to the very high diffusion properties of FOX’s
round functions, the high algebraic degree of the sbox mapping, and the
high number of rounds, we are strongly convinced that FOX will resist to
known variants of linear and differential cryptanalysis (like differential-linear
cryptanalysis [29, 183], boomerang [322] and rectangle attacks [28]), as well
as generalizations thereof, like Knudsen’s truncated and higher-order differ-
entials [161], impossible differentials [26], and Harpes’ partitioning crypt-
analysis [126], for instance.
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Slide and Related-Key Attacks Slide attacks [37, 38] exploit periodic
key-schedule algorithms, which is not a property of FOX’s key-schedule algo-
rithms. Furthermore, due to very good diffusion and the high non-linearity
of the key-schedule, related-key attacks are very unlikely to be effective
against FOX.

Interpolation and Algebraic Attacks Interpolation attacks [142] take
advantage of S-boxes exhibiting a simple algebraic structure. Since FOX’s
non-linear mapping sbox does not possess any simple relation over GF(2) or
GF(28), such attacks are certainly not effective.

One of our main concerns was to avoid a pure algebraic construction for
the sbox mapping, as it is the case for a large number of modern designs
of block ciphers. Although such S-boxes have many interesting non-linear
properties, they probably form the best conditions to express a block ci-
pher as a system of sparse, over-defined low-degree multivariate polynomial
equations over GF(2) or GF(28); this fact may lead to effective attacks, as
argued by Courtois and Pieprzyk in [70].

Not choosing an algebraic construction for sbox does not necessarily en-
sure security towards algebraic attacks. Note that we base our non-linear
mapping on “small” permutations, mapping 4 bits to 4 bits, and that, ac-
cording to [70], any such mapping can always be written as an overdefined
system of at least 21 quadratic equations: let us denote the input (resp. the
output) of such a small S-box by x1||x2||x3||x4 (resp. by y1||y2||y3||y4), and
if we consider a 16 × 37 matrix containing in each row the values of the
t = 37 monomials

{1, x1, . . . , x4, y1, . . . , y4, x1x2, . . . , x1y1, . . . , y3y4}

for each of the 16 possible entries, we note that its rank can be at most
16, thus, for any S-box, there will be at least ρ ≥ 37 − 16 = 21 quadratic
equations. We have checked that the rank of these matrices for FOX’s small
S-boxes S1, S2, and S3 are equal to 16, and there exist thus 21 quadratic
equations describing it; furthermore, we are not aware of any quadratic
relation over GF

(
28
)

for sbox. Following the very same methodology than
[70], it appears that XSL attacks would break members of the FOX family
within a complexity11 of 2139 to 2156, depending on the block size and on
the rounds number.

Namely, we can construct an overdefined multivariate system of qua-
dratic equations describing FOX using the XSL approach, which aims at
recovering all the subkeys, without taking care of the key-schedule algorithm.
Let us assume that FOX has r rounds, and thus r subkeys with the same
size than the plaintext. We need hence r known plaintext-ciphertext pairs
to uniquely determine the key. We use from now on the same notations than

11Under the most pessimistic hypotheses.
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in [70]. S is defined to be the total number of substitution boxes considered
during an attack. Hence,

SFOX64 = 3 · 8 · r2

for FOX64, and
SFOX128 = 3 · 16 · r2

as each substitution box sbox is built from three small S-boxes on {0, 1}s,
with s = 4. Let t denote the number of monomials (i.e. t = 37 in our case),
let t′ being the number of terms in the basis for one S-box that can be
multiplied by some fixed variable and are still in the basis (we have t′ = 5
in the case of FOX). Then, Courtois and Pieprzyk [70] estimate that the
complexity of a XSL attack can be estimated to

Tω with T ≈ (t− ρ)P ·
(
S

P

)

where ω is the best possible exponent for Gaussian elimination, T represents
the total number of terms, and where

P =
t− ρ
s+ t′

S

In the case of FOX, we get

P =
16

4 + 5
24r2

< 4

According to Courtois and Pieprzyk [70], in order that the attack works, as
difference operation) it is necessary to choose P such that

R

T − T ′ ≥ 1 (4.6)

where

R ≈ S · s(t− ρ)P−1 ·
(

S

P − 1

)

represents the total number of equations, and

T ′ ≈ t′(t− ρ)P−1 ·
(
S − 1

P − 1

)

is the total number of terms in the basis that can be multiplied by some
fixed variable and are still in the basis. Eq. (4.6), in the case which interests
us, is already fullfiled for P = 4, but R ≈ 1. As the overall complexity of
the attack is very sensitive to the value of P , and according to Courtois and
Pieprzyk [70],
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P = 4 P = 5

S ω = 2.376 ω = 3 ω = 2.376 ω = 3

FOX64/k/12 3456 2139 2175 2171 2216

FOX64/k/16 6144 2147 2185 2181 2228

FOX128/k/12 6912 2148 2187 2183 2231

FOX128/k/16 12288 2156 2197 2192 2243

Figure 4.26: Estimations of the complexity of Courtois-Pieprzyk attacks
against FOX

Though XSL attacks will probably always work for some P , we
considered the minimum value P for which R

T−T ′ ≥ 1. This
condition is necessary, but probably not sufficient.

we will consider the cases P = 4 as well as P = 5 in our estimations of the
complexity of applying algebraic attacks to FOX.

Another subject of controversy is the value of ω, i.e. the complexity ex-
ponent of a Gaussian reduction. Courtois and Pieprzyk [70] assume that
ω = 2.376, which is the best known value obtained by Coppersmith and
Winograd [62]. According to [70], the constant factor in this algorithm is
unknown to the authors of [62], and is expected to be very big. Accord-
ingly, it is disputed whether such an algorithm can be applied efficiently in
practice. For this reason, we will consider both ω = 2.376 and ω = 3 in our
estimations.

A summary of our estimations is given in Fig. 4.26. At the light of the
previous discussion, we should interpret these figures with an extreme care:
on the one hand, the real complexity of XSL attacks is by no means clear
at the time of writing and is the subject of much controversy [236]; one
the other hand, we feel that the advantages of a small hardware footprint
overcome such a (possible) security decrease.

Integral Attacks Integral attacks [169] apply to ciphers operating on
well-aligned data, like SPN structures. As the round functions of FOX are
SPNs, one can wonder whether it is possible to find an integral distinguisher
on the whole structure and we show now that it is indeed the case.

Let us consider the case of FOX64: we denote the input bytes by xi(8)
with 0 ≤ i ≤ 7 and the output of the third round lmid64 by yi(8) with
0 ≤ i ≤ 7. We have the following integral distinguisher on 3 rounds of
FOX64.

Theorem 4.3.6. Let x3(8) = a, x7(8) = a ⊕ c, and xi(8) = c for i =
0, 1, 2, 4, 5, 6, where c is an arbitrary constant. We consider plaintext struc-
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tures x(j) for 1 ≤ j ≤ 256 where a takes all 256 possibles byte values. Then,

256⊕

j=1

y
(j)
0 ⊕ y

(j)
6 = 0,

256⊕

j=1

y
(j)
1 ⊕ y

(j)
7 = 0,

256⊕

j=1

y
(j)
0 ⊕ y

(j)
2 ⊕ y

(j)
4 = 0,

256⊕

j=1

y
(j)
1 ⊕ y

(j)
3 ⊕ y

(j)
5 = 0.

Proof. See Fig. 4.27, where “C” denotes a constant byte, “A” denotes an
active byte, and “S” denotes a byte, whose sum under the structure is equal
to zero.

This integral distinguisher can be used to break (four, five) six rounds of
FOX64 (by guessing the one, two, or three last round keys and testing the
integral criterion for each subkey candidate on a few structures of plain-
texts) within a complexity of about (272, 2136) 2200 partial decryptions and
negligible memory. A similar property may be used to break up to 4 rounds
of FOX128 (by guessing the last round key) with a complexity of about 2136

operations and negligible memory.

4.3.5 Implementation Issues

In this part, we discuss several issues about the implementation of the
FOX family on low-end 8-bit architectures and on high-end 32/64-bit ones.
Finally, we give results about the performances of various implementations
we have written on different platforms.

8-bit Architectures

The resources representing the most important bottleneck in a block cipher
implementation on a smartcard (which uses typically low-cost, 8-bit micro-
processors) is of course the RAM usage. The amount of efficiently usable
RAM available on a smartcard is typically in the order of 256 bytes. It
may be a bit larger depending on the cases, but as this type of smart card
is devoted to contain more than a simple encryption routine, FOX imple-
mentations on this kind of platforms will minimize the amount of necessary
RAM. ROM is not so scarce as RAM on a smartcard, so the code size can
be greater than the RAM usage. It is usually reasonable not to have a ROM
size (instructions + possible precomputed tables) greater than 1024 bytes.
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or

f32

or

f32

or

f32

c||c||c||a⊕ cc||c||c||a

C||C||C||C

C||C||C||C

C||C||C||A

C||A||C||A C||C||C||A

C||A||C||C

A||A||A||A

A||S||A||S

A||S||S||S A||A||A||S

S||S||S||S

Figure 4.27: Integral Distinguisher in 3 rounds of FOX64.
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Strategy Precomputations Data size

A No precomputed data 24 B

B sbox 256 B

C sbox, talpha, dalpha 768 B

D sbox, stalpha, sdalpha, stalpha2, sdalpha2 1280 B

Figure 4.28: Four different strategies to implement FOX on low-end mi-
croprocessors

Four Memory Usage Strategies Obviously, the most intensive compu-
tation are related to the evaluation of the sbox mapping and of the mu4 and
mu8 mappings. We propose in the following four different (the last one con-
cerning uniquely FOX128) strategies using various amounts of precomputed
data to implement these mappings; they are summarized in Fig. 4.28. Note
that the precomputed data may be stored in ROM and that the constants
needed in the key-schedule algorithm are not taken into account. Strategy
A can be applied when extremely few memory is available. For this, one
computes on-the-fly the sbox mapping, as it is described in §4.3.3, page 192,
and all the operations in GF

(
28
)
. The sole needed constants are the small

substitution boxes S1, S2 and S3 (see Fig. 4.23). Strategy A is clearly the
slowest one. A significant speed gain can be obtained if one precomputes
the sbox mapping (Strategy B), the finite field operations being all com-
puted dynamically. A third possibility (Strategy C) is to precompute two
more mappings: talpha(x) is a function mapping an element x to α · x, with
the multiplication in GF

(
28
)
; dalpha(x) is a function mapping an element

x ∈ GF
(
28
)

to α−1 · x. Finally, in the case of FOX128, a further speed gain
may be obtained (Strategy D) by tabulating the five following mappings:

sbox(x) : x 7→ sbox(x)
stalpha(x) : x 7→ sbox(x) · α
sdalpha(x) : x 7→ sbox(x) · α−1

stalpha2(x) : x 7→ sbox(x) · α2

sdalpha2(x) : x 7→ sbox(x) · α−2

The implementation of the sigma4/mu4 layer is relatively straighforward:

y0(8) = sbox(x0(8))⊕ sbox(x1(8))⊕ sbox(x2(8))⊕
α · sbox(x3(8))

y1(8) = sbox(x0(8))⊕ sbox(x1(8))⊕ sbox(x3(8))⊕ α · sbox(x2(8))

⊕α−1 · sbox(x1(8))

y2(8) = sbox(x0(8))⊕ sbox(x2(8))⊕ sbox(x3(8))⊕ α · sbox(x1(8))

⊕α−1 · sbox(x0(8))



— 207 —

y3(8) = sbox(x1(8))⊕ sbox(x2(8))⊕ sbox(x3(8))⊕ α · sbox(x0(8))

⊕α−1 · sbox(x2(8))

By carefully rewriting the above equations and by re-using some tempo-
rary results, one can easily minimize the number of sbox, talpha, dalpha
evaluations and the number of ⊕ operations. However, the resulting imple-
mentation is strongly dependent of the chosen strategy.

The implementation of the sigma8/mu8 layer is not much complicated.
By rewriting the operations as done above, one can easily obtain a fast im-
plementation. For instance, in case of an implementation following memory
strategy C, one can obtain the following computations:

y0(8) = sbox(x0(8))⊕ sbox(x1(8))⊕ sbox(x2(8))⊕ sbox(x3(8))⊕
sbox(x4(8))⊕ sbox(x5(8))⊕ sbox(x6(8))⊕ α · sbox(x7(8))

y1(8) = sbox(x0(8))⊕ sbox(x1(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x1(8))⊕ sbox(x3(8))⊕ α · sbox(x4(8)

)
⊕

α−1 ·
(
sbox(x2(8))⊕ sbox(x5(8))⊕ α−1 · (sbox(x2(8))⊕ sbox(x6(8)))

)

y2(8) = sbox(x0(8))⊕ sbox(x6(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x0(8))⊕ sbox(x2(8))⊕ α · sbox(x3(8)

)
⊕

α−1 ·
(
sbox(x1(8))⊕ sbox(x4(8))⊕ α−1 · (sbox(x1(8))⊕ sbox(x5(8)))

)

y3(8) = sbox(x5(8))⊕ sbox(x6(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x1(8))⊕ sbox(x6(8))⊕ α · sbox(x2(8)

)
⊕

α−1 ·
(
sbox(x0(8))⊕ sbox(x3(8))⊕ α−1 · (sbox(x0(8))⊕ sbox(x4(8)))

)

y4(8) = sbox(x4(8))⊕ sbox(x5(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x0(8))⊕ sbox(x5(8))⊕ α · sbox(x1(8)

)
⊕

α−1 ·
(
sbox(x2(8))⊕ sbox(x6(8))⊕ α−1 · (sbox(x3(8))⊕ sbox(x6(8)))

)

y5(8) = sbox(x3(8))⊕ sbox(x4(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x4(8))⊕ sbox(x6(8))⊕ α · sbox(x0(8)

)
⊕

α−1 ·
(
sbox(x1(8))⊕ sbox(x5(8))⊕ α−1 · (sbox(x2(8))⊕ sbox(x5(8)))

)

y6(8) = sbox(x2(8))⊕ sbox(x3(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x3(8))⊕ sbox(x5(8))⊕ α · sbox(x6(8)

)
⊕

α−1 ·
(
sbox(x0(8))⊕ sbox(x4(8))⊕ α−1 · (sbox(x1(8))⊕ sbox(x4(8)))

)

y7(8) = sbox(x1(8))⊕ sbox(x2(8))⊕ sbox(x7(8))⊕
α ·
(
sbox(x2(8))⊕ sbox(x4(8))⊕ α · sbox(x5(8)

)
⊕

α−1 ·
(
sbox(x3(8))⊕ sbox(x6(8))⊕ α−1 · (sbox(x0(8))⊕ sbox(x3(8)))

)

This computation flow (consisting of 71 ⊕, 15 talpha and 15 dalpha evalua-
tions) is obviously not optimal in terms of operations; by using redundant
temporary computations, one can spare a few more operations.
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We give now a constant-time implementation of talpha and dalpha. The
routines talpha2 and dalpha2 can be implemented by iterating twice talpha
and dalpha, respectively. Note that these implementations do not take into
account security issues related to other side-channel attacks, like SPA/DPA.

;; Implementation of talpha() on 8051

;;

;; R0 : input

;; R0 : output

MOV A, R0 ;; A := R0

RLC A ;; left rotation through carry

MOV R0, A ;; storing the result

CLR A ;; A := 0

SUBB A, #0 ;; C set ? A = 0xFF : A = 0x00

ANL A, #F9 ;; C set ? A = 0xF9 : A = 0x00

XRL A, R0 ;; A := A XOR R0

MOV R0, A ;; R0 := A

;; Implementation of dalpha() on 8051

;;

;; R0 : input

;; R0 : output

MOV A, R0 ;; A := R0

RRC A ;; left rotation through carry

MOV R0, A ;; storing the result

CLR A ;; A := 0

SUBB A, #0 ;; C set ? A = 0xFF : A = 0x00

ANL A, #FC ;; C set ? A = 0xFC : A = 0x00

XRL A, R0 ;; A := A XOR R0

MOV R0, A ;; R0 := A

32/64-bit Architectures

Most modern CPUs architecture are 32- or 64-bit ones. In this section, we
list several ways to optimize an implementation of FOX in terms of speed
(i.e. of throughput).

Subkeys Precomputation Most of the time, block ciphers are used to
encrypt several blocks of data, so it is very time-sparing to precompute the
subkeys once for all and to store them in a table. Typically, one needs
128 bytes of memory to store all the subkeys for an implementation of
FOX64 with 16 rounds and twice as much for FOX128.
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Implementation of f32 and f64 using Table-Lookups The f32 and f64
functions can be implemented very efficiently using a combinations of table-
lookups and XORs. We will focus on the f32 function, but the considerations
are similar for which concerns f64. Let x0(8)||x1(8)||x2(8)||x3(8) be an input of
f32. We denote by t0(8)||t1(8)||t2(8)||t3(8) the temporary result obtained after
the mu4 application. Let rk0(8)||rk1(8)||rk2(8)||rk3(8) denote the first half of
the round key. Finally, let vi(8) = xi(8) ⊕ rki(8) for 0 ≤ i ≤ 3. We have




t0(8)
t1(8)
t2(8)
t3(8)


 =




1 1 1 α
1 c α 1
c α 1 1
α 1 c 1


×




sbox(v0(8))

sbox(v1(8))

sbox(v2(8))

sbox(v3(8))




This equation may be rewritten as




t0(8)
t1(8)
t2(8)
t3(8)


 = sbox(v0(8))×




1
1
c
α


⊕ sbox(v1(8))×




1
c
α
1


⊕

sbox(v2(8))×




1
α
1
c


⊕ sbox(v3(8))×




α
1
1
1




Thus, one may precompte 4 tables of 256 4-bytes elements defined by

TBSM0[a] =




1 · sbox(a)
1 · sbox(a)
c · sbox(a)
α · sbox(a)


 , TBSM1[a] =




1 · sbox(a)
c · sbox(a)
α · sbox(a)
1 · sbox(a)




TBSM2[a] =




1 · sbox(a)
α · sbox(a)
1 · sbox(a)
c · sbox(a)


 , TBSM3[a] =




α · sbox(a)
1 · sbox(a)
1 · sbox(a)
1 · sbox(a)




and write




t0(8)
t1(8)
t2(8)
t3(8)


 = TBSM0[v0(8)]⊕ TBSM1[v1(8)]⊕ TBSM2[v2(8)]⊕ TBSM3[v3(8)]

Similarly, we can denote the temporary result after the second key-addition
layer of f32 before the last substitution layer by u0(8)||u1(8)||u2(8)||u3(8) and
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by w0(8)||w1(8)||w2(8)||w3(8), the temporary result after the last substitution
layer, one can use the same strategy with the following tables:

TBS0[a] =




sbox(a)
0
0
0


 , TBS1[a] =




0
sbox(a)

0
0




TBS2[a] =




0
0

sbox(a)
0


 , TBS3[a] =




0
0
0

sbox(a)




and write




w0(8)

w1(8)

w2(8)

w3(8)


 = TBS0[u0(8)]⊕ TBS1[u1(8)]⊕ TBS2[u2(8)]⊕ TBS3[u3(8)]

As outlined before, the process is similar for the implementation of the f64
function. In this case, we have to define two times 8 tables of 256 64-bit
elements. The following table summarizes the size of the various tables for
a fully-precomputed implementation :

number of tables width [bytes] total size [bytes]

FOX64 2× 4 4 8192
FOX128 2× 8 8 32768

Depending on the target processor, the nearest cache (i.e. the fastest mem-
ory) size may be smaller than 32768 bytes. In this case, one can spare half of
the tables (at the cost of a few masking operations) by noting that all the TBS
tables are “embedded” in the TBSM ones; this implementation strategy will
by denoted half-precomputed implementation. This allows to reduce the fast
memory needs to 4096 and 16384 bytes, respectively. Fig. 4.29 summarizes
the best strategies for various amounts of L1 cache memory.

For most modern microprocessors (denoted by ∗ in Fig. 4.29), a fully-
precomputed implementation of FOX64 and FOX128 is probably the fastest
possible solution. For the processors denoted by • , a half-precompted im-
plementation is likely the best solution. The supplementary masking oper-
ations may be furthermore used to increase the instructions throughput on
pipelined architectures.

Some microprocessors have a very small L1 data cache (they are de-
noted in ? in Fig. 4.29). In the case of FOX128, even a half-precomputed
implementation will result in many caches misses, inducing a performance
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penalty. For early versions of Intel Pentium IV, a half-precomputed imple-
mentation of FOX64 is advantageous, while one can reduce the size of the
precomputed data needed for a FOX128 implementation down to 8192 bytes
at the cost of at most 18 supplementary PSHUFW instructions. Although these
operations will result in a performance penalty, the latter will be reduced
since the highly-parrallelizable structure of the f64 function allows to fully
use the pipeline and thus to improve the instructions throughput. As most
modern CPU architectures are pipelined ones, one can take this fact into
account in order to improve performances of FOX implementations. There
are two “dependency walls” in a FOX round function. The first one is just
after the first subkey addition, the second one just after the second subkey
addition. Inbetween, the additions of the table-lookup results may be done
in any order, as an XOR is a commutative addition.

FOX128 is an excellent candidate for using the 64-bit instructions of
actual 32-bit microprocessors. For instance, on the Intel architecture, the
MMX/SSE/SSE2/SSE3 instruction sets may be used to “emulate” a 64-
bit microprocessor. Furthermore, by expressing the Extended Lai-Massey
scheme as in Fig. 4.24, one can compute very efficiently the two orthomor-
phisms as a single one on 64-bit architectures.

In order to get the best performances for FOX implementations written
in a high-level language, one can get large speed differences when using
different compilers. Furthermore, the choice of the data structure of the
precomputed tables and of the data to be encrypted plays an important
role: implementing a simple way to access these data will result in a speed
increase.

Key-Schedule Algorithms For applications needing a high key-agility,
one can implement the various key-schedule algorithms using the same guide-
lines and tricks as for the core algorithm, since they share many common
features.

Performance Results

Fig. 4.30 summarizes the results obtained at the time of writing by our
optimized implementations of the FOX family (in clock cycles to encrypt one
block, with precomputed subkeys): We note that FOX64 is extremely fast
on 32-bit architectures, while FOX128 is competitive on 64-bit architectures.
Namely, according to the Nessie project [247], FOX64/12 is the fourth fastest
64-bit block cipher on Pentium 3 behind Nimbus, CAST128 and RC5. It is
19% faster than Misty1 (NESSIE’s choice), 39% faster than IDEA, 57%
faster than DESand about three times faster than Triple-DES. The generic
version of FOX64 (with 16 rounds) is still 8% faster than IDEA. On the 64-
bit architecture Alpha 21264, FOX128/12 is the third fastest block cipher
behind NUSH and AES, according to [247], while FOX128 (16 rounds) with
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Processor cache size [kB] Note Best Strategy

Alpha 21164 8 (data) ?

Alpha 21264 64 (data) ∗
AMD Athlon XP 128 (data + code) ∗
AMD Athlon MP 128 (data + code) ∗
AMD Opteron 64 (data) ∗
Intel Pentium III 16 (data) •
Intel Pentium IV 8/16 (Prescott) (data) ? / •
Intel Xeon 8 (data) ?

Intel Itanium 16 (data) •
Intel Itanium2 16 (data) •
PowerPC G4 32 (data + code) •
PowerPC G5 32 (data) ∗
UltraSparc II 16 (data) •
UltraSparc III 64 (data) ∗

Figure 4.29: Best implementation strategies on 32/64-bit microprocessors

Cipher Architecture Implementation r = 12 r = 16

FOX64/k/r Intel Pentium 3 C (gcc) 316 406
FOX64/k/r Intel Pentium 3 ASM 220 295
FOX64/k/r Intel Pentium 4 C (gcc) 388 564
FOX64/k/r AMD Athlon-XP C (gcc) 306 390
FOX64/k/r Alpha 21264 C (Compaq cc) 360 480
FOX128/k/r Intel Pentium 3 C (gcc) 636 840
FOX128/k/r AMD Athlon-XP C (gcc) 544 748
FOX128/k/r Alpha 21264 C (Compaq cc) 440 588

Figure 4.30: Performances of optimized implementations of FOX
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256-bit keys is still 30% faster than Camellia, which is one of NESSIE’s
choices. Finally, we have an implementation of FOX64/12 (resp. FOX64/16)
on 8051, a typical low-cost 8-bit architecture, needing 16 bytes of RAM, 896
bytes of ROM (precomputed data and precomputed subkeys) and 575 bytes
of code size encrypting one block in 2958 (resp. 3950) clock cycles.
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Chapter 5
Conclusion and Open Problems

As demonstrated, for instance, by the heuristic nature of the design of FOX,
we are still far from a “provably secure”, and still practically fast block ci-
pher. Currently, the only possibility to assess the security level of a block
cipher consists in studying and trying to break it (being its full version,
or reduced-round versions thereof). Therefore, the security level of a given
block cipher keeps merely a function of the quantity of time and efforts in-
vested by cryptanalysts, and a “secure” block cipher has only a time-security
curve slowly decreasing; the IDEA block cipher surely is a very good example
possessing such a curve, as demonstrated by Fig. 3.10, page 137. Obviously,
proposing a new block cipher simultaneously defines open problems. Ideally,
the security of FOX should be investigated thoroughly by different people,
notably for which concerns Courtois-Pieprzyk algebraic attacks, before ben-
efiting from the confidence of the cryptologic community, and by extension,
of the industrial world. We would like to outline here that even in the un-
likely case where using 4-bit S-boxes would result in a clear security decrease,
and render FOX impractically insecure, replacing them by stronger S-boxes
keeps a rather easy task.

The study of generic distinguishers in a formal way is a small step to-
wards a better understanding of necessary mathematical conditions on block
ciphers for security. In this thesis, we hope to have demonstrated that using
old statistical tools, well-known and well applied in many engineering fields,
but which were perhaps neglected so far in the domain of block ciphers, can
help us to easily derive interesting properties of computationally unbounded
distinguishers in a rather easy way. Still, many open problems remain: we
have thoroughly treated the class of attacks which we can model by a non-
adaptive distinguisher between two binary random sources, but even finding
tight bounds for non-adaptive distinguishers between two general random
sources is still an open problem. Furthermore, discussing (and efficiently
describing) more complicated dependences about the key is an open issue as
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well, and we feel that the adaptive case is even more complicated; iterated
attacks surely are an interesting intermediate case. In the hypothetical case
where we would be able to precisely define a set of sufficient conditions for
a block cipher to be secure, and this in a properly defined and practical
security model, exhibiting a block cipher satisfying these properties looks
like another non-trivial gap to fill. Hence, Vaudenay’s decorrelation theory,
which is nowadays the only general framework which proposes constructive
solutions and which goes in the right direction, deserves, in our personal
opinion, more attention.
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[42] U. Blöcher and M. Dichtl. Problems with the linear cryptanalysis of
DES using more than one active S-box per round. In B. Preneel, editor,
Fast Software Encryption: Second International Workshop. Leuven,
Belgium, 14-16 December 1994. Proceedings, volume 1008 of Lecture
Notes in Computer Science, pages 265–274. Springer-Verlag, 1995.

[43] Bluetoothtm. Bluetooth Specifications, version 1.2, 2003. Available on
https://www.bluetooth.org.

[44] J. Borst. The block cipher: GrandCru. First Open NESSIE Workshop,
Leuven, Belgium, November 13-14, 2000.



— 226 —

[45] J. Borst, L. Knudsen, and V. Rijmen. Two attacks on reduced IDEA
(extended abstract). In W. Fumy, editor, Advances in Cryptology –
Eurocrypt’97: International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Konstanz, Germany, May 1997.
Proceedings, volume 1233 of Lecture Notes in Computer Science, pages
1–13. Springer-Verlag, 1997.

[46] J. Borst, B. Preneel, and J. Vandewalle. Linear cryptanalysis of RC5
and RC6. In L. Knudsen, editor, Fast Software Encryption: 6th In-
ternational Workshop, FSE’99, Rome, Italy, March 1999. Proceed-
ings, volume 1636 of Lecture Notes in Computer Science, pages 16–30.
Springer-Verlag, 1999.

[47] E. Brickel, J. Moore, and M. Purtill. Structure in the S-boxes of DES.
In A. Odlyzko, editor, Advances in Cryptology – Crypto’86, Santa
Barbara, California, USA, 1986. Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 3–7. Springer-Verlag, 1987.

[48] L. Brown. Analysis of the DES and the design of the LOKI encryption
scheme. PhD thesis, Dept. Computer Science, UC UNSW, ADFA,
Canberra, Australia, 1991.

[49] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry. Improving resistance
to differential cryptanalysis and the redesign of LOKI. In H. Imai,
R. Rivest, and Matsumoto, editors, Advances in Cryptology – Asi-

acrypt’91, International Conference on the Theory and Applications
of Cryptology, Fujiyoshida, Japan, November 11-14, 1991. Proceed-
ings, volume 739 of Lecture Notes in Computer Science, pages 36–50.
Springer-Verlag, 1993.

[50] L. Brown, J. Pieprzyk, and J. Seberry. LOKI - a cryptographic prim-
itive for authentication and secrecy applications. In J. Seberry and
J. Pieprzyk, editors, Advances in Cryptology – Auscrypt’90, Inter-
national Conference on Cryptology, Sydney, Australia, January 8-11,
1990. Proceedings, volume 453 of Lecture Notes in Computer Science,
pages 229–236. Springer-Verlag, 1990.

[51] L. Brown, J. Pieprzyk, and J. Seberry. Introducing the new LOKI97
block cipher. First AES Candidate Conference (AES1), Ventura, Cal-
ifornia, USA, August 20-22, 1998.

[52] L. Brown and J. Seberry. Key scheduling in DES type cryptosys-
tems. In J. Seberry and J. Pieprzyk, editors, Advances in Cryptology –
Auscrypt’90, International Conference on Cryptology, Sydney, Aus-
tralia, January 8-11, 1990. Proceedings, volume 453 of Lecture Notes
in Computer Science, pages 221–228. Springer-Verlag, 1990.



— 227 —

[53] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. Matyas, L. O’Connor, M. Peyravian, D. Safford, and
N. Zunic. Mars – a candidate cipher for AES. First AES Candidate
Conference (AES1), Ventura, California, USA, August 20-22, 1998.

[54] C. Cachin. An information-theoretic model for steganography. In
D. Aucsmith, editor, Information Hiding, Second International Work-
shop, Portland, Oregon, USA, April 14-17, 1998. Proceedings, volume
1525 of Lecture Notes in Computer Science, pages 306–318. Springer-
Verlag, 1998.

[55] C. Cachin. An information-theoretic model for steganography. Avail-
able on http://eprint.iacr.org/2000/028/, 2000.

[56] A. Canteaut and M. Videau. Degree of composition of highly non-
linear functions and applications. In L. Knudsen, editor, Advances in
Cryptology – Eurocrypt 2002: International Conference on the The-
ory and Applications of Cryptographic Techniques, Amsterdam, The
Netherlands, April 28 - May 2, 2002. Proceedings, volume 2332 of
Lecture Notes in Computer Science, pages 518–533. Springer-Verlag,
2002.

[57] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password
interception in a SSL/TLS channel. In D. Boneh, editor, Advances
in Cryptology – Crypto 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003.
Proceedings, volume 2729 of Lecture Notes in Computer Science, pages
583–599. Springer-Verlag, 2003.

[58] F. Chabaud and S. Vaudenay. Links between differential and lin-
ear cryptanalysis. In A. De Santis, editor, Advances in Cryptology –
Eurocrypt’94: Workshop on the Theory and Application of Cryp-
tographic Techniques, Perugia, Italy, May 1994. Proceedings, volume
950 of Lecture Notes in Computer Science, pages 356–365. Springer-
Verlag, 1995.

[59] J. Cheon, M. Kim, K. Kim, J.-Y. Lee, and S. Kang. Improved impos-
sible differential cryptanalysis of Rijndael and Crypton. In K. Kim,
editor, Information Security and Cryptology – ICISC 2001: 4th In-
ternational Conference, Seoul, Korea, December 6-7, 2001. Proceed-
ings, volume 2288 of Lecture Notes in Computer Science, pages 39–49.
Springer-Verlag, 2002.

[60] D. Coppersmith. The Data Encryption Standard (DES) and its
strength against attacks. IBM Journal of Research and Development,
38(3):243–250, May 1994.



— 228 —

[61] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ci-
phers with linear masking. In M. Yung, editor, Advances in Cryptology
– Crypto 2002: 22nd Annual International Cryptology Conference
Santa Barbara, California, USA, August 18-22, 2002. Proceedings,
volume 2442 of Lecture Notes in Computer Science, pages 515–532.
Springer-Verlag, 2002.

[62] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251–280,
1990.

[63] Toshiba Corporation. Specification of Hierocrypt-3. First Open
NESSIE Workshop, Leuven, Belgium, November 13-14, 2000.

[64] Toshiba Corporation. Specification on a block cipher: Hierocrypt-L1.
First Open NESSIE Workshop, Leuven, Belgium, November 13-14,
2000.

[65] N. Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In D. Boneh, editor, Advances in Cryptology – Crypto

2003, 23rd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 2003. Proceedings, volume 2729,
pages 176–194. Springer-Verlag, 2003.

[66] N. Courtois. Higher order correlation attacks, XL algorithm and crypt-
analysis of Toyocrypt. In P. Lee and C. Lim, editors, Information
Security and Cryptology – ICISC 2002: 5th International Conference,
Seoul, Korea, November 28-29, 2002. Revised Papers, volume 2587 of
Lecture Notes in Computer Science, pages 182–199. Springer-Verlag,
2003.

[67] N. Courtois, G. Castagnos, and L. Goubin. What do DES S-boxes say
to each other ? Available on http://eprint.iacr.org/2003/184/,
2003.

[68] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient al-
gorithms for solving overdefined systems of multivariate polynomial
equations. In B. Preneel, editor, Advances in Cryptology – Euro-

crypt 2000: International Conference on the Theory and Application
of Cryptographic Techniques, Bruges, Belgium, May 2000. Proceed-
ings, volume 1807 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[69] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with
linear feedback. In E. Biham, editor, Advances in Cryptology – Eu-

rocrypt 2003: International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003.



— 229 —

Proceedings, volume 2656 of Lecture Notes in Computer Science, pages
345–359. Springer-Verlag, 2003.

[70] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. In Y. Zheng, editor, Advances
in Cryptology – Asiacrypt 2002: 8th International Conference on
the Theory and Application of Cryptology and Information Security,
Queenstown, New Zealand, December 1-5, 2002. Proceedings, volume
2501 of Lecture Notes in Computer Science, pages 267–287. Springer-
Verlag, 2002.

[71] T. Cover and J. Thomas. Information Theory. Wiley Series in
Telecommunications. Wiley, 1991.

[72] CRYPTREC Project. Website http://www.ipa.go.jp/security/

enc/CRYPTREC/index-e.html.

[73] I. Csiszár and J. Körner. Information theory: coding theorems for
discrete memoryless systems. Academic Press, 1981.

[74] T. Cusick. Boolean functions satisfying a higher order strict avalanche
criterion. In T. Helleseth, editor, Advances in Cryptology – Euro-

crypt’93: Workshop on the Theory and Application of Cryptographic
Techniques, Lofthus, Norway, May 1993. Proceedings, volume 765 of
Lecture Notes in Computer Science, pages 102–117. Springer-Verlag,
1993.

[75] T. Cusick and M. Wood. The RedocII cryptosystem. In A. Menezes
and S. Vanstone, editors, Advances in Cryptology – Crypto’90, 10th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 11-15, 1990. Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 545–563. Springer-Verlag, 1990.

[76] J. Daemen. Cipher and hash function design strategies based on linear
and differential cryptanalysis. PhD thesis, K. U. Leuven, Belgium,
1995.

[77] J. Daemen, R. Govaerts, and J. Vandewalle. Weak keys for IDEA. In
D. Stinson, editor, Advances in Cryptology – Crypto’93: 13th An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 22-26, 1993. Proceedings, volume 773 of Lecture Notes
in Computer Science, pages 224–231. Springer-Verlag, 1994.

[78] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. The Noekeon
block cipher. First Open NESSIE Workshop, Leuven, Belgium,
November 13-14, 2000.



— 230 —

[79] J. Daemen and V. Rijmen. The block cipher Rijndael. First AES
Candidate Conference (AES1), Ventura, California, USA, August 20-
22, 1998.

[80] J. Daemen and V. Rijmen. The block cipher Rijndael. In J.-J.
Quisquater and B. Schneier, editors, Smart Card Research and Ap-
plications, Third International Conference, CARDIS ’98, Louvain-la-
Neuve, Belgium, September 14-16, 1998. Proceedings, volume 1820 of
Lecture Notes in Computer Science, pages 277–284. Springer-Verlag,
2000.

[81] J. Daemen and V. Rijmen. The Design of Rijndael. Information
Security and Cryptography. Springer, 2002.

[82] J. Damen, L. Knudsen, and V. Rijmen. The block cipher SQUARE. In
E. Biham, editor, Fast Software Encryption: 4th International Work-
shop, FSE’97, Haifa, Israel, January 1997. Proceedings, volume 1267
of Lecture Notes in Computer Science, pages 149–165. Springer-Verlag,
1997.

[83] D. Davies and S. Murphy. Pairs and triples of DES S-boxes. Journal
of Cryptology, 8(1):1–25, 1995.

[84] H. Demirci. Square-like attacks on reduced rounds of IDEA. In K. Ny-
berg and H. Heys, editors, Selected Areas in Cryptography: 9th An-
nual International Workshop, SAC 2002, St. John’s, Newfoundland,
Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture
Notes in Computer Science, pages 147–159. Springer-Verlag, 2003.
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Appendix A
Probability Theory

In this thesis, we make a heavy use of results taken out of general probability
theory; we recall now basic concepts thereof and useful notations, mostly
according to [119].

A.1 Preliminaries

The set of all possible outcomes of an experiment is called the sample space
and we will denote it by S. An event ω is then a subset ω ∈ S of S. This
drives us to define the concept of σ-field :

Definition A.1.1 (σ-field). A sequence F of subsets of S is called a σ-field
if it satisfies the following conditions:

1. ∅ ∈ F ;

2. if ω1, ω2, · · · ∈ F , then
⋃∞
i=1 ωi ∈ F ;

3. if ω ∈ F , then ω ∈ F .

In order to be able to discuss the likelihood of occurence of events, we
need to define properly a probability measure.

Definition A.1.2 (Probability Measure / Probability Space). Let S
be a sample space and F be a σ-field of subsets of S. A probability measure
Pr on (S,F) is a function Pr : F → [0, 1] satisfying

1. Pr[∅] = 0 and Pr[S] = 1;

2. if ω1, ω2, . . . is a sequence of disjoint members of F , i.e. ωi ∩ ωj = ∅
for i 6= j, then

Pr

[ ∞⋃

i=1

ωi

]
=
∞∑

i=1

Pr[ωi]
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The triple (S,F ,Pr) is called a probability space.

Two events ω1 and ω2 are called independent if Pr[ω1 ∩ ω2] = Pr[ω1] ·
Pr[ω2]. More generally, a family {ωi : i ∈ I} is called independent if

Pr

[
⋂

i∈J
ωi

]
=
∏

i∈J
Pr[ωi]

for all finite subsets J of I. The conditional probability of an event ω1 given
a event ω2 is then defined, provided Pr[ω2] > 0, as

Pr[ω1|ω2] =
Pr[ω1 ∩ ω2]

Pr[ω2]

One is not always interested in an experiment itself, but rather in some
consequence of its random outcome. Such consequences, if real valued, may
be thought of as function which map S into the real line R. These functions
are called random variables.

Definition A.1.3 (Random Variable / Distribution Function). A
random variable X is a function X : S → R with the property that {s ∈
S : X(s) ≤ x} ∈ F for each x ∈ R. The distribution function of a random
variable X is the function FX : R→ [0, 1] defined by

FX(x) = Pr
X

[X ≤ x]

In this thesis, we will frequently make use of discrete and continuous
random variables. A random variable X is called discrete is it takes values in
some countable subset of R. The distribution function of a discrete random
variable X is called a probability mass function. A random variable X is
called continous if its distribution function can be expressed as

FX(x) =

∫ x

−∞
f(t) dt x ∈ R

for some integrable function f : R → [0,∞[ called the probability density
function of X. Furthermore, one can generalize the concept of distribution
function of a random variable to the one of joint distribution function of a
vector X: let X = (X1, . . . , Xn) be a random vector of n random variables.
The joint distribution function of X on the probability space (S,F ,Pr) is
the function FX : R

n → [0, 1] defined by

FX(x) = Pr
X

[X ≤ x]

for x ∈ R
n. An important characteristic of a random variable is its expecta-

tion and its k-th moment.
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Definition A.1.4 (Expectation/Moment). The expectation of a dis-
crete random variable X with probability mass function fX is defined to be

E[X] =
∑

x:fX(x)>0

x · fX(x)

while the expectation of a continuous random variable with probability den-
sity function fX is defined to be

E[X] =

∫ +∞

−∞
x · fX(x) dx

If k is a positive integer, the k-th moment mk of a random variable X is
defined to be mk = E[Xk]; the k-th central moment σk of X is defined to be
σk = E[(X −m1)

k].

In this thesis, we will mostly use the expectation and the second central
moment of a probability distribution, the latter being called the variance.

A.2 Common Probability Distributions

Several probability distributions play a central role in our thesis. We define
them formally and we state some of their properties.

Definition A.2.1 (Bernoulli Distribution). A discrete random variable

X is said to be distributed according to the Bernoulli distribution D
(p)
Bern if it

can take only two values, namely 0 or 1, with respective probabilities

Pr
D

(p)
Bern

[X = 0] = 1− p

Pr
D

(p)
Bern

[X = 1] = p.

Definition A.2.2 (Binomial Distribution). A discrete random variable

X is said to be distributed according to the binomial distribution D
(n,p)
Bin if it

can take values 0 ≤ k ≤ n with probability

Pr
D

(n,p)
Bin

[X = k] =

(
n

k

)
pk(1− p)n−k.

Definition A.2.3 (Multinomial Distribution). Let X be a discrete r-
dimensional random vector whose i-th component is denoted Xi. X is said

to be distributed according to the multinomial distribution D
(n,p)
Multi if it can

take values x ∈ N
r with probability

Pr
D

(n,p)
Multi

[X = x] =

(
n

x1! . . . xr!

)
px1
1 · · · pxr

r
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under the constraints

r∑

i=1

xi = n and
r∑

i=1

pi = 1.

Definition A.2.4 (Normal Distribution). A continuous random variable
X is said to be distributed according to the normal distribution Dφ if it take
values x ∈ R with probability

Pr
Dφ

[α ≤ X ≤ β] =
1√
2π

∫ β

α
e−

t2

2 dt.

Similarly, a continuous random variable X is said to be distributed according

to the normal distribution D
(µ,σ)
φ with parameters µ and σ if the random

variable
X − µ
σ

is distributed according to Dφ.

We denote respectively the probability density function and the cumu-
lative distribution function of the normal distribution by

φ(x) =
1√
2π
e−

x2

2 and Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

Finally, the following result obviously plays a central role in this thesis.

Theorem A.2.1 (Central-Limit Theorem). Let X1, . . . , Xn be a se-
quence of mutually independent random variable with a common probabil-
ity distribution. Suppose that µ = E[Xi] and σ2 = Var[Xi] exist and let
Sn = X1 + · · ·+Xn. Then for every fixed ξ,

lim
n→∞

Pr

[
Sn − nµ
σ
√
n

< ξ

]
= Φ(ξ)



Appendix B
Statistical Information Theory

In this chapter, we recall some well-known results about Csiszár and Körner’s
method of types [73] and we recall how to apply it to derive Chernoff’s in-
formation. We closely follow the organization of Chapter 12 in [71].

B.1 The Method of Types

Let us consider a discrete alphabet X = {a1, . . . , a|X |}. The type Dx (or em-
pirical probability distribution) of a sequence x = (x1, . . . , xn) of n symbols
with xi ∈ X for all i ∈ {1, . . . , n}, is defined to be the relative proportion of
occurrences of each symbol of X , i.e.

∀a ∈ X , Pr
Dx

[a] =
N(a|x)

n

where N(a|x) is the number of times the symbol a occurs in the sequence
x ∈ X n. We denote by Pn the set of types with denominator n. If DP ∈ Pn,
then the set of sequences of length n and type DP is called the type class of
DP , and is noted T (DP ), i.e.

T (DP ) = {x ∈ X n : Dx = DP}

The essential power of the method of types arises from the following result,
which shows that the number of types is at most polynomial in n.

Theorem B.1.1.

|Pn| ≤ (n+ 1)|X | (B.1)

From this point, we will assume that the sequence X1, . . . , Xn is drawn
independently and identically distributed according to a distribution DP .
Let us define the Kullback-Leibler distance.
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Definition B.1.1 (Kullback-Leibler Distance). The Kullback-Leibler
distance D(DP ||DQ) between two discrete probability distributions DP and
DQ is defined to be

D(DP ||DQ) =
∑

x∈X
Pr
P

[x] log2

(
PrP [x]

PrQ[x]

)
.

Coming back to considerations, we note that all sequences with the same
type have the same probability, as stated by the following theorem.

Theorem B.1.2. If X1, . . . , Xn are drawn iid according to DP , then the
probability of x depends only on its type and is given by

Pr
Pn

[x] =

n∏

i=1

Pr
P

[xi] = 2−n(H(x)+D(Dx ||DP )) (B.2)

where H(x) is the entropy1 of x and D(Dx||DP ) is the Kullback-Leibler
distance between the distributions Dx and DP .

The following theorem allows to give useful bounds on the size of a type
class.

Theorem B.1.3. For any DP ∈ Pn,
1

(n+ 1)|X |
2nH(DP ) ≤ |T (DP )| ≤ 2nH(DP ) (B.3)

With help of Theorem B.1.3, it is possible to prove the following result.

Theorem B.1.4. For any DP ∈ Pn, and any distribution DQ, the probabil-
ity of the type class T (DP ) under DQn satisfies

1

(n+ 1)|X |
2−nD(DP ||DQ) ≤ Pr

Qn
[T (DP )] ≤ 2−nD(DP ||DQ) (B.4)

B.2 Sanov’s Theorem

The method of types and above summarized results can be used to show
Sanov’s Theorem (see Th. B.2.1). We recall first some notions of topology.
A family τ of subsets of a set X is a topology of ∅ ∈ τ , if X ∈ τ , if any
union of sets of τ belongs to τ , and if any finite intersection of elements of τ
belongs to τ . Sets that belongs to τ are called open sets, while complements
of open sets are called closed sets. The interior of a subset A ⊂ X is the
union of the open subsets of A. The closure of A, is the intersection of all
closed sets containing A.

1The entropy of a discrete random variable X distributed according to DX is defined
by H(X) = −

P

x∈X PrX [x] log2(PrX [x]).
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Theorem B.2.1 (Sanov). Let X1, . . . , Xn be n iid random variables dis-
tributed according DQ. Let E ⊆ Pn be a set of probability distributions.
Then

Pr
Qn

[E ] = Pr
Qn

[E ∩ Pn] ≤ (n+ 1)|X |2−nD(DP∗ ||DQ) (B.5)

where

DP ∗ = arg min
DP∈E

D(DP ||DQ) (B.6)

is the distribution in E that is closest to DQ in relative entropy. If, in
addition, the set E is the closure of its interior, then

lim
n→+∞

1

n
log Pr

Qn
[E ] = −D(DP ∗ ||DQ) (B.7)

B.3 Chernoff’s Information

We recall now the derivation of the highest achievable exponent for the
probability of error of an optimal decision region when sampling n times the
same random variable. From Lem. 3.1.1, we know that the optimum test is
a likelihood-ratio test. We can rewrite this ratio as

PrXn
0
[x]

PrXn
1
[x]
≥ τ ⇐⇒ D(Dx||DXn

1
)−D(Dx||DXn

0
) ≥ 1

n
log τ

or, in other words, it is possible to rewrite the log-likelihood ratio as the
difference between th relative entropy distance of the sample type to each
of the two possible distributions. Let A denote the set on which hypothesis
x← DXn

0
is accepted. Then, since the set A is convex, one can use Theorem

B.2.1 to show that the error probability

α(n) = Pr
Xn

0

[x ∈ A] (B.8)

is essentially determined by the relative entropy of the closest member DX∗0
of A to DX0 :

lim
n→∞

1

n
log

α(n)

2
−nD(DX∗

0
||DX0

)
= 0 (B.9)

Similarly,

lim
n→∞

1

n
log

β(n)

2
−nD(DX∗

1
||DX1

)
= 0 (B.10)

where β(n) = PrXn
1
[x ∈ A] and DX∗1 is the closest element in A to distribu-

tion DX1 . Now, minimizing D(DX ||DX1) subject to the constraint

D(DX ||DX1)−D(DX ||DX0) ≥
1

n
log τ (B.11)
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will result in the type in A that is closest to DX1 . Setting up the minimiza-
tion of DX1 subject to D(DX ||DX1)−D(DX ||DX0) = 1

n log τ using Lagrange
multipliers, we obtain that the minimizing DX is of the form

Pr
X∗1

[x] = Pr
λ∗

[x] =
PrX0 [x]

λ PrX1 [x]
1−λ

∑
a∈X PrX0 [a]

λ PrX1 [a]
1−λ (B.12)

where λ is chosen so that D(DXλ∗ ||DX0) −D(DXλ∗ ||DX1) = log τ
n . Further-

more, from the symmetry of the above equation, we have DX∗0 = DX∗1 .
We come back to our decision problem. In the Bayesian case, the overall

probability of error is the weighted sum of the two probabilities of error, and
we have

lim
n→+∞

1

n
log

π0α
(n) + π1β

(n)

2−nmin{D(DXλ
||DX0

),D(DXλ
||DX1

)} (B.13)

where DXλ
has the form of (B.12). Since D(DXλ

||DX0) increases with λ and
D(DXλ

||DX1) decreases with λ, the maximum value of

min{D(DXλ
||DX0), D(DXλ

||DX1)} (B.14)

is attained when they are equal. So choosing λ such that

D(DXλ
||DX0) = D(DXλ

||DX1) = C(DX0 ,DX1) (B.15)

yields the highest achievable exponent for the probability error and is called
the Chernoff’s information.
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