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implementations; these mappings ome with provable properties suh as invert-ibility and a single-yle struture. As an example, the mapping TF-0 is proposedin [7℄, whih is de�ned by x 7→ x+(x2∨C) mod 2n for an n-bit state x and with
C ≡ 5, 7 (mod 8). As the maximal length of a yle may be too short for typialvalues of n (e.g. n = 64), and as state-reovery attaks have been desribed [2,8℄,
TF-0 is not meant to be diretly used for ryptographi purposes. Consideringryptographi appliations, several e�ient multi-word T-funtions are proposedin [9℄. Some of these proposals have been broken by Mitra and Sarkar [13℄ usingtime-memory tradeo�s. Based on the results of Klimov and Shamir, a new lassof multi-word T-funtions and two fully spei�ed stream iphers have been pro-posed by Hong et al. [3, 4℄. Their shemes TSC-1 and TSC-2 have a transparentdesign and allow for some �exibility.1.1 Contributions of this PaperIn this paper, we analyse several proposals of T-funtions and exhibit substantialweaknesses in some of these onstrutions. The �aws are extended to dediatedattaks.First we analyse the statistial properties of the pure square mapping, whihallows us to �nd an e�ient distinguisher (with an expeted 232 data omplexity)on TF-0 as well as on a previously unbroken multi-word mapping desribed in [9℄and labeled here as TF-0m, both based on the squaring operation. TF-0m oper-ates on a 256-bit state and the output sequene onsists of the 32 most signi�antbits.Then, we ryptanalyse the TSC-family of stream iphers [4℄, whih operateson a 128-bit state and outputs 32 bits of the state using a �ltering funtion. We�nd a very e�ient distinguisher for TSC-1 with an expeted 222 data omplexity;for TSC-2, we desribe a di�erent distinguishing attak with an expeted 234 dataomplexity.To on�rm our theoretial results, the distinguishing attaks have been im-plemented and run many times with suess. Our distinguishers have a negligibleerror probability and a remarkably small time omplexity.1.2 Notational ConventionsWe analyse ryptographi shemes onsisting of an internal state x ∈ X , anupdate funtion f : X → X and an output funtion g : X → Y. In the ase wheretime instants are relevant, we will denote xt the state at time t (distintion ofpowers will be lear from the ontext). Hene, the iterative sheme maps the state
xt to xt+1 = f(xt) and outputs yt = g(xt). The seed of the iteration is obtainedfrom the seret key with help of a key sheduling proess. The keystream Konsists in the onatenation of suessive outputs, namely K = y0||y1|| · · · .We assume throughout this paper the threat model of a known-plaintextattak, i.e., we assume to know some part of the keystream K. Our purposeis then to distinguish K from a uniformly distributed random sequene, or toreover the state at any time.



In the ase where the state is a vetor formed by some words, we will denotea single word by xj and the state as x = (x0, x1, . . .). Adopting the ommonnotation, [x]i is the (i + 1)-st least signi�ant bit-slie of the state, [x]0 denotingthe rightmost bit-slie. Consequently, [xj ]i is the (i + 1)-st least signi�ant bitof word j. The operation msbm(x) states for the m most signi�ant bits of x.Arithmeti operations are performed modulo 2n with typial word size n = 32or 64 bit. Boolean operations are performed on all n bits in parallel and aredenoted by ∧ (AND), ∨ (OR), and by ⊕ (XOR). Finally, ≪ k denotes a yli leftshift by k positions.2 Cryptanalysis of Square MappingsKlimov and Shamir have proposed di�erent types of T-funtions based on thesquaring operation [7, 9℄. After introduing the framework of this setion, wefous on the pure square mapping and derive a hypothesis about their proba-bility distribution. This distribution is used in order to distinguish the proposedmappings TF-0 and TF-0m with signi�ant advantage.Let us onsider a sheme whih onsists of an update funtion f and anoutput funtion g with the notation of Set. 1.2. Let us further de�ne the randomvariables X and X ′ over the set X = {0, 1}n, with uniformly distributed X andwith X ′ = f(X). Equivalently, Y and Y ′ are random variables over Y = {0, 1}mwith uniformly distributed Y and with Y ′ = g(f(X)). Given PrY , PrY ′ andsome uniform random or pseudo-random output respetively, we an perform astatistial test (e.g. a Neyman-Pearson test, see Appendix A for more details)in order to assign the output to a distribution. We are interested in the overallomplexity of the distinguisher orresponding to some designated overall errorprobability πe.For small3 word sizes n, the distribution PrY ′ an be determined by an ex-haustive omputation of g(f(x)) for all 2n elements x, resulting in a preompu-tation time omplexity of O(2n) and a memory omplexity (measured with thenumber of required memory ells) of O(2m). Given both distributions and a des-ignated overall error probability, the data omplexity of an optimal distinguisheris estimated with help of the squared Eulidean imbalane (see Appendix A). Weassume that the test is performed in real-time, hene we do not need additionalmemory in order to store the data. The online time omplexity is idential tothe data omplexity.However, a preomputation of PrY ′ might be infeasible for large values of
n (e.g. n = 64 bit). We perform some detailed analysis of PrY ′ for small wordsizes n and establish an analytial hypothesis for the approximated distributionof Y ′, onsidering only the most biased elements. This signi�antly redues theo�ine time and memory omplexity, but might inrease the online time anddata omplexity of the distinguisher, given some πe. For small word sizes n, thehypothesis an be veri�ed with the aurate distributions, and for large n, the3 The term small is used with respet to urrent omputational possibilities, i.e. n . 40bit for personal omputers nowadays.



quality of the hypothesis will be diretly examined by the experimental dataomplexity of the distinguisher.2.1 Distribution of the Pure Square MappingLet us de�ne the pure square mapping f(x) = x2 mod 2n and g(x) = msbm(x)with m = n/2, whih we will refer as PSM. Apart from the least signi�ant bit, fis a T-funtion. Iteration produes some �xed points suh as 0 or 1, hene f annot be onsidered as an update funtion for a real appliation. However, we willbe able to redue more omplex single-yle mappings to some modi�ed squaremappings and apply the results obtained in this setion; in other words, we willonsider the pure square mapping as an ideal ase, resulting in distinguisherswith minimal data omplexity ompared to modi�ed square mappings.We �rst mention that Klimov and Shamir [7℄ found an analytial expressionfor probabilities of single bits of the square mapping. Applying the notation
X ′ = f(X) for an uniformly distributed X , they found that Pr([X ′]0 = 0) = 1

2 ,
Pr([X ′]1 = 0) = 1 and Pr([X ′]i = 0) = 1

2 (1+2−
i

2 ) for i > 1. However, as we willhave to deal with an additional arry bit later on (whih would redue this biassigni�antly), we are more interested in the distribution of words.We explain how to derive highly biased probability distributions for X ′ =
f(X) and Y ′ = g(f(X)). As shown in the next proposition, f is not a permuta-tion, resulting in an unbalaned distribution of X ′ (there are some preditableelements f(x) with exeptionally large bias).Proposition 1. Consider the funtion f : {0, 1}n → {0, 1}n with f(x) = x2 mod
2n. For suessive elements x ∈ {0, . . . , 2n − 1}, the images f(x) have a ylistruture with yle length 2n−2. Hene f is neither injetive nor surjetive.Proof. As x2 −

(

2n−1 + x
)2

= 0 mod 2n, we have two yles of length 2n−1,and as (

2n−2 + x
)2 −

(

2n−2 − x
)2

= 0 mod 2n, both yles have two mirroredsequenes of length 2n−2. Hene the output of suessive numbers x has theshape abc . . . cbaabc . . . cba. ⊓⊔Due to the spei�ed output funtion in PSM, the bias is transferred to thedistribution of Y ′. For a truly random sheme, any element of the output ourswith probability π0 = 2−n/2. For the partiular sheme PSM, we observed (forsmall word sizes n) that there exist 4 outomes with biased probability 2 · π0,
12 outomes with biased probability 1.5 · π0 and so on. This property appearsto be independent of n, and we therefore an establish a hypothesis for themost biased elements (whih are expliitly known). Let Yi be the aggregateontaining elements of onstant biased probability πi. The parameter si denotesthe ardinality of Yi, and ni denotes the minimal word size for a stable ourreneof πi. The parameters ni, si and πi are summarized in Tab. 1. Then we have for
i = 0, . . . , k (limited by the ondition n ≥ nk)

Y0 = {2(n−n0)/2 · j2; j = 0, . . . , s0}
Yi = {2(n−ni)/2 · (1 + 8j); j = 0, . . . , si}
Y∞ = Y − ∑Yi .

(1)



The values in Tab. 1 are determined with empirial methods, however niand si are exat at least for word sizes within our omputational possibilities.In the ase of PSM, πi is exat for i = 0, 1, but �utuating for i > 1 so we haveto take an average value. A further approximation is done with the remainingelements in Y∞, whih are assigned to a onstant (standardised) probability. Thenumber of aggregates k determines the auray of the approximation. However,
k is onstrained by the ondition n < nk, and as the values of πi are onlyaurate for ni ≈ 40, we usually hoose k = 8 for n > 40 bit. This orrespondsto a memory omplexity of 217. Regarding the omplexities of a distinguisher,inreasing the number of aggregates k is oupled with more time, more memoryand less data.Table 1. Parameters of the approximated distribution for the �rst 9 aggregates

i 0 1 2 3 4 5 6 7 8

πi2
m 2.000 1.500 1.200 1.100 1.050 1.030 1.002 1.005 1.003

ni2
−2 2 3 4 5 6 7 8 9 10

log
2
(si) 2 3 5 7 9 11 13 15 17

2.2 Attaking the Single-Word Mapping TF-0Let us now onsider the running single-word proposal TF-0 with the updatefuntion f(x) = x + (x2 ∨ C) mod 2n where C ≡ 5, 7 (mod 8), and with theoutput funtion g(x) = msbm(x) where 1 ≤ m ≤ n/2 as desribed in [7, 10℄. Asthe low-order bits are known to be weak, the authors of the sheme proposed
m = 1, 8, 16, 32 for the standard word size n = 64 bit. Klimov and Shamirshowed that f is an invertible T-funtion over an n-bit state x with a singleyle of length 2n. The number of extrated bits m ontrols a tradeo� betweenseurity and e�ieny of the sheme. We give some relationship to PSM withthe next proposition.Proposition 2. Consider the sheme TF-0. If one requires C < 2n−m, it is
g(f(x))−g(x) = g(x2)+α mod 2m for n − m > 2 and for a arry bit α ∈ {0, 1}.Proof. As f(x) = y = x+(x2∨C) mod 2n, we onlude y−x ≡ x2∨C (mod 2n)for C < 2n−m. Hene, g(y − x) ≡ g(x2 ∨ C) (mod 2m) and g(y − x) ≡ g(x2)
(mod 2m) for C < 2n−m. We �nally have g(y)− g(x)−α ≡ g(x2) (mod 2m) for
C < 2n−m and for some arry bit α ∈ {0, 1}. ⊓⊔Proposition 2 states that the di�erene of two onseutive outputs of TF-0 di�ersonly by an additive arry bit α ∈ {0, 1} from the output of PSM. Therefore, wemay aurately approximate the distribution of the random variable g(f(X)) −
g(X) by the distribution of the random variable Y ′ of PSM (i.e., we neglet thein�uene of the arry bit).



We hoose standard parameters C = 5 and m = n/2. In order to performa test for large values of n, we approximate the distribution PrY ′ with thehypothesis desribed in Set. 2.1, using an optimal number of aggregates. Thedata omplexities are estimated aording to (9) and veri�ed with experiments.We got an experimental data omplexity of 232 for n = 64 bit, whih turns outto be very lose to the estimated value, and somewhat larger than the lowerlimit derived by extrapolation for the aurate probability distribution.If the sheme is used as a pseudo-random number generator in large omputersimulations, the output may not be onsidered as random after 232 iterations,although we have a single-yle of 264 states. This observation is onsistentwith the pratie nowadays, not to use more data than √
P of a pseudo-randomnumber generator (PRNG) with period P . However, we also examined modi�edoutput funtions with a smaller number of extrated bits m. Experiments showthat (independently of the word size n), dereasing m by one bit inreases thedata omplexity by a fator of 2. We onlude that, in ontradition to previ-ous assumptions, not only the lower bits of this T-funtion are weak, but alsothe higher bits. This is an intrinsi property of the sheme, whih will haveonsequenes for other square mappings and may have onsequenes for moreompliated output funtions.We mention that state-reovery attaks on TF-0 have been desribed in [2,8℄. Moreover, Mitra and Sarkar [13℄ desribed a time-memory tradeo� for thesquaring problem, whih may be applied to onseutive output di�erenes of

TF-0. The most e�ient algorithms have a omplexity of about 216.2.3 Attaking the Multi-Word Mapping TF-0mSeveral multi-word update funtions proposed in [9℄ have been attaked with atime-memory tradeo� by Mitra and Sarkar [13℄. We now present a distinguishingattak against a multi-word proposal whih has not been broken yet, and whihwe will refer as TF-0m. The update funtion f orresponds to (12) in [9℄, it is aninvertible T-funtion over a 4n-bit state x = (x0, x1, x2, x3) with a single yleof length 24n:
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. (2)It is s0 = x0, s1 = s0 ⊕ x1, s2 = s1 + x2, s3 = s2 ⊕ x3. The onstants aresatisfying [Ci]0 = 1 for i ∈ {0, 1, 2, 3}, and [C3]2 = 1. All operations are arriedout on n bit words and κi denotes the arry bit of xi. The output funtion is
g(x) = msbm(x3) with m = n/2. We hoose the standard word size n = 64 bit.The multi-word update funtion (2) onsists of 4 approximatively indepen-dent and identially distributed (iid) random variables similar to the single-wordupdate funtion of TF-0. We may onentrate only on the most signi�ant vari-able x3. The argument to be squared s3 an be approximated as uniformly



distributed, and therefore produes the same output as x2. The arry bit mod-i�es the output with a probability of 2−33; this infrequent event will not havea signi�ant in�uene to the distinguisher. Therefore, we do not have to mod-ify the approximate distribution used for the distinguisher. Theoretial dataomplexity remains the same, and simulations result in an experimental dataomplexity of 232 for a 256 bit state with 224 unknown bits. We have performed
20 experiments, observing no inorret deision of our distinguisher. The dataomplexity is very lose to the omplexity for TF-0, on�rming our assumptionon the in�uene of κ and s.We emphasize the pratial appliability of this result and the small numberof required data, ompared to the large number of unknown bits. As before, wealso onsidered to extrat less bits m < n/2. Again, we found that dereasing mby one bit inreases the data omplexity by a fator of 2. Hene redution of mmay still not prevent pratial attaks.3 Cryptanalysis of TSCWe start this setion with a desription of the reent proposal of stream ipherfamily TSC [4℄. We �nd a very e�ient distinguishing attak on TSC-1, as wellas a distinguishing attak on TSC-2.3.1 Desription of the ShemesThe hardware-oriented stream ipher family TSC onsists of a state vetor of
128 bits x = (x0, x1, x2, x3), an update T-funtion f and an output funtion g.The update funtion onsists of an odd 32-bit parameter α(x) and a single-yleS-box S, mapping a 4 bit input to a 4 bit output. If [α]i = 0, then the mapping
Se is applied on bit-slie i of the state, otherwise the mapping So is applied. e(resp. o) is an even (resp. odd) number. This proedure is repeated for all 32bit-slies in a single update period. With the satisfation of these properties, fis a single-yle T-funtion, hene the period of the ipher is 2128.The odd parameter is de�ned by α = (p + C) ⊕ p ⊕ 2s with a onstant C,
p = x0∧x1∧x2∧x3 and s = x0 +x1+x2+x3. Exept for the lower few bits, eahoutput bit of α is equal to 1 almost half of the time. Due to the properties of anodd parameter, one has [α]0 = 1, meaning that the least signi�ant bit-slie isalways mapped by So. Consequently, the bits from the least signi�ant bit-slieof the state will be referred as irregular bits.Let us de�ne the spei�ed proposals. In TSC-1, the powers of the S-box are
e = 2 and o = 1, the onstant used in the odd parameter is C = 0x12488421,and the S-box (in standard notation) and the output funtion are de�ned by

S = (3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12)
g(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3) .

(3)In TSC-2, one has e = 0 (hene, the idential mapping is used), o = 1 and
C = 0x00000001. The S-box and the output funtion are de�ned by



S = (5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0)
g(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3) .

(4)The output funtions have a period of 2128, however, three state variables in theoutput equation determine the remaining variable, hene the maximum seurityof the iphers is 96 bit. Furthermore, there are some time-memory tradeo�s onTSC with large preomputation time omplexities.3.2 Attaking the Stream Cipher TSC-1In this setion, we present a linearisation attak on TSC-1. Probabilisti linearrelations in the update funtion (i.e. relations between state bits at di�erent timeinstants) and in the output funtion (i.e. relations between state bits and outputbits) are ombined, in order to obtain relations between output bits at di�erenttime instants. Provided that the relations are biased, the output of TSC-1 anbe distinguished from a random stream.Let us �rst disuss a linear approximation of the T-funtion. We fous on asingle bit [xt
j ]i and analyse the statistial e�et of ∆ iterations to this bit. Let

Y∆ be the indiator variable of the event [xt
j ]i = [xt+∆

j ]i, implying that a �xedbit is repeated after ∆ iterations. After ∆ iterations, bit-slie i (inluding thebit under observation) is mapped δ times by S, with ∆ ≤ δ ≤ 2∆ (the mapping
S is applied 2∆ − δ times, and the mapping S2 is applied δ − ∆ times). Hene,in order to ompute Pr(Y∆ = 1), we have to analyse the distribution of δ andthe bit-�ip probabilities of the mappings Sδ.Let us denote b∆(δ) the probability that after ∆ iterations, the S-box isapplied δ times. For regular bit-slies, we reasonably assume equal probabilitiesfor the appliation of S and S2 (whih is, however, a simpli�ation for some lowerbit-slies), and binomial distribution for b∆,

b∆(δ) =

(

∆

δ − ∆

)

·
(

1

2

)∆

. (5)For the irregular bit-slie, it is b∆(δ) = 1 for δ = ∆, and zero otherwise.In order to desribe the e�et of the mappings Sδ, let us analyse the S-box.We will denote w an uniform random number 0 ≤ w ≤ 15, and i an index
0 ≤ i ≤ 31. Let also Xδ be the indiator variable of the event [w]i = [Sδ(w)]i forany �xed bit position i. The S-box is designed suh that the bit-�ip probabilityfor an appliation of S and S2 is balaned. However, there is a huge bias of thebit-�ip probability for some multiple appliations of S, namely for Pr(Xδ = 1)with δ = 0 mod 4 (this observation is of ourse portable to the mapping S2).We �nd Pr(X4 = 1) = Pr(X12 = 1) = 1/8, Pr(X8 = 1) = 3/4 and of ourse
Pr(X16 = 1) = 1. These results are independent of bit-position i, other values of
δ result in balaned probabilities.



Finally, the bit-�ip probability P (Y∆) of a single bit in the state for ∆ iter-ations simply beomes the weighted sum
Pr(Y∆ = 1) =

2∆
∑

δ=∆

Pr(Xδ = 1) · b∆(δ) . (6)We �nd a maximal bias for ∆ = 3 with Pr(Y3 = 1) = 0.3594, and still alarge bias for many other values of ∆. The predited probabilities are in goodagreements with experiments. In the ase of irregular bits, (6) simply beomes
Pr(Y∆ = 1) = Pr(X∆ = 1) with a large bias for ∆ = 0 mod 4.In the �tive ase of a perfet single-yle S-box (whih, however, does notexist) with Pr(Xδ = 1) = 1/2 for δ 6= 16 and Pr(X16 = 1) = 1, (6) beomes
Pr(Y∆ = 1) = (b∆(16) + 1)/2 for regular bits. A maximal bias is obtained for
∆ = 11, resulting in Pr(Y11 = 1) = 0.6128.Let us ombine the relation (6) with a simple linear approximation of theoutput funtion. The bias of Y∆ strikes through the output funtion, suh thatthe loops in the state are also present in the output. We onsider a single bit [yt]iof the output and analyse the statistial e�et of ∆ iterations to this bit. Let Z∆be the indiator variable of the event [yt]i = [yt+∆]i, implying that a �xed bit ofthe output is repeated after ∆ iterations. We approximate the output funtionby [y]i = [x0]i+8 ⊕ [x1]i+17 ⊕ [x2]i+25 ⊕ [x3]i ⊕ c, for i = 0, . . . , 31 (additions ofindies are performed modulo 32) and a arry bit c ∈ {0, 1}. For bit-positions
i = 0, 7, 15, 24, one irregular bit is involved in the linear approximation of [y]i;onsequently, these output bits are alled irregular. Negleting the arry bit andavailing the fat that the output bits are omposed of independent state bits, theprobability Pr(Z∆ = 1) is approximated using Matui's Piling-up Lemma [12℄.For regular output bits, we obtain

Pr(Z∆ = 1) =
1

2
+ 23 ·

(

Pr(Y∆ = 1) − 1

2

)4

. (7)Notie that ǫ = Pr(Y∆ = 1)− 1
2 is the probability bias. In the ase of irregularoutput bits, one of the four fators ǫ in (7) is substituted by ǫ′ = Pr(X∆ =

1) − 1
2 . Let us onsider the ase of ∆ = 3; it is Pr(Z3 = 1) = 0.5031 for regularoutput bits (and a balaned probability for irregular output bits). However, as wenegleted the arry bit in this simple model, the above probability is onsideredas an upper limit. Notie that the arry is also biased and inlines towardsabsorbing itself. Experiments show that indeed, most of the regular output bitsare biased for ∆ = 3. We emphasise that higher bits are a�eted equivalentlyto lower bits. Due to the integer addition, the exat bias depends on the bit-position. We �nd the maximum bias for bit-position i = 1 with p′ = 0.5003. Asimilar result is obtained for ∆ = 8 and i = 0.This biased probability is aessible to a ryptanalyst with known plaintextand may be used to distinguish the outome of the ipher from a uniform randomoutome. With the uniform probability p = 1/2 and the biased probability p′ =

p(1+ q), the required data omplexity beomes O(1/pq2), see Theorem 2 in [11℄.



Consequently, for p′ = 0.5003 we expet a data and online time omplexityof about 222 (16 MB of keystream); o�ine time omplexity is negligible. Weperformed a number of experiments (taking all biased bits into aount) andveri�ed the predited omplexity, given a small probability of error.As desribed above, a variant of this attak even works without taking intoaount any spei� property of the single-yle S-box. Finally, we mention thatthe bias of Z∆ an be transformed in a state-reovery attak by guess-and-determine. In a �rst step, we guess the least-signi�ant bit-slie [xt]0, whih maybe iterated separately. The four orresponding bits are subtrated independentlyfrom appropriate output bits in order to onstrut a modi�ed index variable.Considering (7), we expet the bias to signi�antly inrease for a right guess,and we expet a balaned output for a false guess. After reovering [xt]0, wemay ontinue with onseutive bit-slies. Considering all available equations,experiments showed that a single bit-slie may be aepted or rejeted (witha reasonable probability of error) using 222 iterations. Repeating this for all 24values of a single bit-slie, and for all 25 bit-slies, we obtain an overall omplexityof about 231. A similar result has also been obtained by Peyrin and Muller [14℄.3.3 Attaking the Stream Cipher TSC-2In both versions of TSC, the 32 bits of α determine the update of the 128 bitsof the state. Hene we may wait for appropriate values of α in order to initiatesome attaks. In TSC-2, an interesting ase is the minimal-weight parameter
α = 1, for whih only the least signi�ant bit-slie is modi�ed and two similarsuessive outputs may be deteted. The detetor is an algorithm whih takesas input the keystream z and gives out 1 if α = 1, and 0 otherwise. The detetoran make two types of errors: it an either output 1 when α 6= 1 (false positives)or 0 when α = 1 (false negatives). The error probabilities are denoted by A and
B, respetively.The omplete set of states U resulting in α(xt) = 1 is given with the on-ditions ∑3

i=0 xt
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x0, 0x3, 0x5, 0x6,

0x9, 0xA, 0xC}. In the following, let us assume that suh a state ours at time
t = 0. Hene we have α0 = 1, and only the least signi�ant bit-slie of thestate is hanged by the mapping f : x0 → x1; onsequently, we suppose thatthe subsequent outputs y0 and y1 have low distane. Let us analyse the exem-plary integer modular di�erene y0 − y1 for x ∈ U with [x0]0 = 0x5; we �ndthat [x1]0 = 0x4 and [x0]i = [x1]i for i 6= 0. The output funtion produes
y0 = y1 +1≪25+1≪3+1≪12 and hene y0−y1 = 0x02001008. In fat, we �ndthat y0 − y1 = const for any x ∈ U , where the onstant const depends only onthe least-signi�ant bit-slie [x0]0 in most of the ases, see Tab. 2. For less than
1% of the states in U , the integer modular di�erene is not onstant beause anaddition in the output funtion may ause a arry bit, whih propagates fromthe msb to the lsb due to the yli shift.



Table 2. List of output di�erenes for α = 1, some of whih will be applied in theattak
[x0]0 [x1]0 y0

− y1

0x0 0x5 0xFDBFEFF8

0x3 0xC 0x01C05007

0x5 0x4 0x02001008

0x6 0x3 0xFE3FEFF8

0x9 0x8 0x02001008

0xA 0x1 0xFE002FF9

0xC 0x7 0xFDFFAFF9Detetion of single onstants only would result in a huge amount of falsealarms. However, examining Tab. 2, we �nd a path4 for the iteration of [x0]0with 0x6 → 0x3 → 0xC whih is losed in U , meaning that α0 = α1 = α2 = 1.Therefore, we may restrit the detetor to detet only a subset of states V ⊂ U ,where V is de�ned by the onditions ∑3
i=0 xt

i ∈ {0x00000000, 0x80000000} and
[xt]0 ∈ {0x6, 0x3}. The detetor takes three suessive outputs, omputes twodi�erenes of onseutive outputs and ompares them with the �xed values; ifthere is a math of both, the detetor returns 1, and 0 otherwise. The probabilityof x ∈ V is 2−33, and a false detetion due to random outputs5 ours withprobability 2−64. As the di�erenes are onstant almost all the time, the error
B (whih would inrease the running time of the detetor) is negligible, too.The time and data omplexity is around 233 (no preomputation and negligiblememory).The detetor may be transformed in a distinguisher by feeding the detetorwith a �xed amount of data n. If the detetor always returns 0, then the dis-tinguisher returns 0 (random stream); if the detetor returns 1 at least one,then the distinguisher returns 1 (keystream produed by TSC-2). The probabil-ity of false positives may be negleted, and the probability of false negatives is
B = (1 − 2−33)n. For B = 0.05, we obtain a data omplexity of about n = 234.With a suessful detetion of α(xt) = 1, we obtain the information∑3

i=0 xt
i ∈

{0x00000000, 0x80000000}, as well as the value of bit-slie [xt]0 and the out-put equation g(xt) = yt. This information may be used for a state-reoveryattak with a omplexity smaller than 296. However, TSC-2 appears to be seri-ously injured with our e�ient distinguishing attak, and we did not study thestate-reovery attak in more detail.4 Beause of the triangular struture, the least signi�ant bit-slie may be iteratedseparately.5 In order to inrease the set V, we do not make use of the onnetion of the wholepath.
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samples. A (possibly omputationally unbounded) algorithm δν whih takes asinput a sequene of ν realizations zν distributed aording to D where either
D = D0 or D = D1, and outputs 0 or 1 aording to its deision, is alled adistinguisher. It an be fully determined by an aeptane region A ⊂ X suhthat δν(zν) = 1 i� zν ∈ A. The ability to distinguish a distribution from anotheris usually measured in terms of the advantage of the distinguisher and is de�nedby

Advδν =
∣

∣

∣Pr
Dν

0

[δν(Zν) = 0] − Pr
Dν

1

[δν(Zν) = 0]
∣

∣

∣ .Hene, the distinguisher an make two types of errors: it an either output 0 when
D = D1 or 1 when D = D0; we will denote these respetive error probabilities by αand β, respetively, and the overall error probability is de�ned as πe = 1

2 (α+β).In [5℄ it is shown that it is easy to de�ne expliitly an optimal distinguisherin this preise statistial setting. Indeed, given a �xed overall probability oferror, it is su�ient for an optimal distinguisher to ount the number νx(zn)of ourrenes of all possible symbols x ∈ X in the sample zn, to ompute thelog-likelihood ratio
llr(zν) =

∑

x∈X

νx(zν) log
PrD0

[x]

PrD1
[x]

(8)and to output 0 as deision i� llr(zν) > 0. If we assume that the distributions
D0 and D1 are lose to eah other, i.e. PrD0

[x] = πx and PrD1
[x] = πx + εxwith |εx| ≪ πx for all x ∈ X , then the following result gives a very aurateestimation of the neessary number of samples.Theorem 1 (Baignères et al. [1℄). Let X1, . . . , Xν be iid random variablesde�ned over X with probability distribution D, let D0 and D1 be two distributionssharing the same support whih are lose to eah other, where πx = PrD0

[x] and
πx + εx = PrD1

[x]. Let d be a real number de�ned by
d = ν

∑

x∈X

ε2
x

πx
.Then, the overall probability of error of an optimal distinguisher between D0 and

D1 is approximately
πe ≈

1√
2π

∫ −

√
d

2

−∞

e−
t
2

2 dt .Baignères et al., based on this result, introdued then what seems to be a natural�measure�, named squared Eulidean imbalane and denoted ∆(D0, D1), betweena distribution D0 and a lose distribution D1 de�ned by
∆(D0, D1) =

∑

x∈X

ε2
x

πx
, (9)sine ∆(D0, D1) is diretly linked to the number of sample needed to distinguishboth probability distributions with a good suess probability.


