On the complexity of Matsui’s attack against DES

Pascal Junod, pascal.junod@epfl.ch

Swiss Institute of Technology, Lausanne
Outline

Matsui’s linear cryptanalysis against 16-rounds DES, as proposed at Crypto’94.

• Historical Overview

• Experimental Results

• Theoretical Analysis

• Conclusion
Linear Cryptanalysis Performances: Historical Overview

- [Matsui, Eurocrypt’93, Crypto’94] Linear cryptanalysis, first experimental implementation

- [Blöcher-Dichtl, FSE’94] Some observations on the application of the piling-up lemma

- [Nyberg, Eurocrypt’94] Linear hull concept

- [Harpes-Kramer-Massey, Eurocrypt’95] Generalization of linear cryptanalysis
• [Vaudenay, 1999] Statistical cryptanalysis concept

• [Kukorelly, 1999] Theoretical study on the piling-up lemma application

• [Selçuk, Indocrypt’00] Bias estimation in linear cryptanalysis
Experiment Description

• Matsui attack has been implemented using today’s technology

• Fast DES routine (bitsliced implementation on the Intel MMX architecture)

• Idle time of 12 - 18 CPUs

• 3-7 days to produce and analyse 2^{43} known pairs

• The experiment has run 21 times
Experimental Results (1)

- Widely accepted attack complexity: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85% within $C_{(0.85)} = 2^{43}$ DES computations.

- Real complexity $C_{(0.85)}$ seems to be lower (logarithmic scale):

![Logarithmic Graph](image)

- Experimental results suggest: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85% within $C_{(0.85)} = 2^{41}$ DES computations.
Experimental Results (2)

Other experimental results:

- Given 2^{43} known pairs, $C_{(0.5)} \approx 2^{38.5}$.

- Given $2^{42.5}$ known pairs, $C_{(0.5)} \approx 2^{42}$.

- Given 2^{40} known pairs, $C_{(0.5)} \approx 2^{51.5}$.
Analysis (1)

- Linear expression: $P_{i_1,\ldots,i_r} \oplus C_{j_1,\ldots,j_s} = K_{k_1,\ldots,k_t}$

- The expression must be biased in order to be useful: $\Pr[\text{Expression holds}] = \frac{1}{2} + \epsilon, |\epsilon| > 0$.

- Wrong-key randomization hypothesis:

\[
\frac{|\Pr[\text{Expression holds}|\text{right key}] - \frac{1}{2}|}{|\Pr[\text{Expression holds}|\text{wrong key}] - \frac{1}{2}|} \gg 1
\]
Analysis (2)

- Statistical Cryptanalysis Concept [Vaudenay, 1995]
• Counting / Analysis / Sorting / Searching phases

• Complexity

• Success Probability : key bits sum guessing, success within a given complexity

• Complexity is function of the right subkey rank \(\Psi \) in the candidates list
Analysis (3)

- **Assumption 1**: Bias produced by a wrong key is independant of the key

- **Assumption 2**: Bias produced by the right key is independant of the ones produced by wrong keys

- **Assumption 3**: The distribution of the biases is well approximated by a normal law

- $n - 1$ wrong candidates follow a probability density f_W, the right one follows f_R.
Theorem 1

$$\Pr [\Psi \leq \psi] = \int_{-\infty}^{+\infty} B_{n+1-\psi,\psi}(F_W(x)) f_R(x) dx$$

and

$$E[\Psi] = 1 + n \left(1 - \int_{-\infty}^{+\infty} f_R(x) F_W(x) dx \right)$$

where

$$B_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1 - t)^{b-1} dt$$

is the incomplete beta function of order \((a, b)\).
Theoretical rank distribution ($\epsilon_w = 0$ and $\epsilon_R = \text{piling-up approximation}$) for various amount of known pairs.
Some observations:

- Wrong-key randomization hypothesis holds well

- \(\hat{\epsilon}_r - \epsilon_r \) is small

- \(\hat{\epsilon}_w \neq 0 \), but it doesn’t matter a lot

- The experimental variances are *a lot* smaller than the theoretical ones.
Conclusion

- Experimental complexity analysis
- Theoretical analysis
- Partial inaccuracy of the model explained by experimental observations