On the complexity of Matsui's attack against DES

Pascal Junod, pascal.junod@epfl.ch

Swiss Institute of Technology, Lausanne

Outline

Matsui's linear cryptanalysis against 16-rounds DES, as proposed at Crypto'94.

- Historical Overview
- Experimental Results
- Theoretical Analysis
- Conclusion

Linear Cryptanalysis Performances: Historical Overview

- [Matsui, Eurocrypt'93, Crypto'94] Linear cryptanalysis, first experimental implementation
- [Blöcher-Dichtl, FSE'94] Some observations on the application of the piling-up lemma
- [Nyberg, Eurocrypt'94] Linear hull concept
- [Harpes-Kramer-Massey, Eurocrypt'95] Generalization of linear cryptanalysis

• [Vaudenay, 1999] Statistical cryptanalysis concept

• [Kukorelly, 1999] Theoretical study on the piling-up lemma application

• [Selçuk, Indocrypt'00] Bias estimation in linear cryptanalysis

Experiment Description

- Matsui attack has been implemented using today's technology
- Fast DES routine (bitsliced implementation on the Intel MMX architecture)
- Idle time of 12 18 CPUs
- 3-7 days to produce and analyse 2⁴³ known pairs
- The experiment has run 21 times

Experimental Results (1)

• Widely accepted attack complexity: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85 % within $C_{(0.85)}^{est} = 2^{43}$ DES computations.

ullet Real complexity $\mathcal{C}_{(0.85)}$ seems to be lower (logarithmic scale):

• Experimental results suggest: Given 2^{43} known pairs, it is possible to recover the key with a success probability of 85 % within $\mathcal{C}_{(0.85)}=2^{41}$ DES computations.

Experimental Results (2)

Other experimental results:

- Given 2^{43} known pairs, $\mathcal{C}_{(0.5)} \approx 2^{38.5}$.
- Given $2^{42.5}$ known pairs, $\mathcal{C}_{(0.5)} \approx 2^{42}$.
- Given 2^{40} known pairs, $\mathcal{C}_{(0.5)} \approx 2^{51.5}$.

Analysis (1)

- Linear expression : $P_{[i_1,\ldots,i_r]}\oplus C_{[j_1,\ldots,j_s]}=K_{[k_1,\ldots,k_t]}$
- The expression must be biased in order to be useful: $\Pr[\text{Expression holds}] = \frac{1}{2} + \epsilon, |\epsilon| > 0.$
- Wrong-key randomization hypothesis:

$$\frac{\left|\text{Pr}[\text{Expression holds}|\text{right key}]-\frac{1}{2}\right|}{\left|\text{Pr}[\text{Expression holds}|\text{wrong key}]-\frac{1}{2}\right|}\gg 1$$

Analysis (2)

• Statistical Cryptanalysis Concept [Vaudenay, 1995]

Counting / Analysis / Sorting / Searching phases

Complexity

• Success Probability: key bits sum guessing, success within a given complexity

 \bullet Complexity is function of the right subkey rank Ψ in the candidates list

Analysis (3)

• Assumption 1: Bias produced by a wrong key is independent of the key

• Assumption 2: Bias produced by the right key is independent of the ones produced by wrong keys

Assumption 3: The distribution of the biases is well approximated by a normal law

ullet n-1 wrong candidates follow a probability density f_W , the right one follows f_R .

Theorem 1

$$\Pr\left[\Psi \leq \psi\right] = \int_{-\infty}^{+\infty} B_{n+1-\psi,\psi}(F_W(x)) f_R(x) dx$$

and

$$E[\Psi] = 1 + n \left(1 - \int_{-\infty}^{+\infty} f_R(x) F_W(x) dx \right)$$

where

$$B_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1} (1-t)^{b-1} dt$$

is the incomplete beta function of order (a,b).

Analysis (4)

Theoretical rank distribution ($\epsilon_w = 0$ and $\epsilon_R = \text{piling-up approximation}$) for various amount of known pairs.

Analysis (5)

Some observations:

- Wrong-key randomization hypothesis holds well
- $\hat{\epsilon}_r \epsilon_r$ is small
- $\hat{\epsilon}_w \neq 0$, but it doesn't matter a lot
- The experimental variances are a *lot* smaller than the theoretical ones.

Conclusion

• Experimental complexity analysis

• Theoretical analysis

Partial inacurracy of the model explained by experimental observations