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Cryptanalytic time-memory trade-offs have been studied for twenty five years and have benefited
from several improvements since the original work of Hellman. The ensuing variants definitely im-
prove the original trade-off but their real impact has never been evaluated in practice. We fill this
lack by analyzing the perfect form of classic tables, distinguished point-based tables, and rainbow
tables. We especially provide a thorough analysis of the latter variant, whose performances have
never been formally calculated yet. Our analysis leads to the concept of a characteristic that en-
ables to measure the intrinsic quality of a trade-off. We finally introduce a new technique based on
checkpoints that still reduces the cryptanalysis time, by ruling out false alarms probabilistically.
Our analysis yields the exact gain of this approach and establishes its efficiency when applied on
rainbow tables.
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1. INTRODUCTION

Many cryptanalytic problems can be solved in theory using an exhaustive search
in the key space, but are still hard to solve in practice because each new instance
of the problem requires to restart the process from scratch. The basic idea of a
time-memory trade-off is to carry out an exhaustive search once for all such that
following instances of the problem become easier to solve. Thus, if there are N
possible solutions to a given problem, a time-memory trade-off can solve it with
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T units of time and M units of memory. In the methods we are looking at, T is
proportional to N2/M2 and a typical setting is T = M = N2/3.

Cryptanalytic time-memory trade-offs have been introduced in 1980 by Hell-
man [Hellman 1980] and applied to DES. Given a plaintext D and a ciphertext C,
the problem consists in recovering the key K such that C = SK(D) where S is an
encryption function assumed to follow the behavior of a random function. Encrypt-
ing D under all possible keys and storing each corresponding ciphertext allows for
immediate cryptanalysis but needs N elements of memory.

The idea of a time-memory trade-off is to find a trade-off between the exhaustive
search and the exhaustive storage. For that, an exhaustive search is carried out
once (precomputation) and only a subset of generated values is kept. The precom-
putation consists in picking m starting elements Sj (1 ≤ j ≤ m) and iterating the
function f , defined by f(K) := R(SK(D)), where R is a reduction function which
generates an arbitrary key from a ciphertext. Let Xj,i+1 := f(Xj,i) be the i-th
iteration of f on Sj , and Ej := Xj,t where t is the given length of the chains. We
have:

S1 = X1,1
f
→ X1,2

f
→ X1,3

f
→ . . .

f
→ X1,t = E1

S2 = X2,1
f
→ X2,2

f
→ X2,3

f
→ . . .

f
→ X2,t = E2

...
...

Sm = Xm,1
f
→ Xm,2

f
→ Xm,3

f
→ . . .

f
→ Xm,t = Em

The key point is that only the first and the last elements of each chain are stored,
providing so a table. In order to increase the success rate, i.e., the probability that
K ∈ {Xj,i, 1 ≤ j ≤ m, 1 ≤ i ≤ t}, several tables with different reduction functions
are generated.

Given a ciphertext C = SK(D), the on-line phase of the cryptanalysis works as
follows: R is applied on C in order to obtain a key Y1, and then the function f is
iterated on Y1 until matching any Ej . We have:

C
R
→ Y1

f
→ Y2

f
→ . . .

f
→ Ys

where s is the length of the generated chain from Y1. Then the chain ending with
Ej = Ys is regenerated from Sj until yielding the expected key K. However, finding
a matching end of chain does not necessarily imply that the key K will be found
in the regenerated chain. There exist situations where the chain that has been
generated from C merges with a chain that is stored in the tables which does not
contain K. This situation is called a false alarm.

Since the original work of Hellman, several papers have dealt with time-memory
trade-offs. Fiat and Naor [Fiat and Naor 1991; 1999] showed that there exist crypto-
graphically sound one-way functions that cannot be inverted with such a trade-off.
Matsumoto, with Kusuda [Kusuda and Matsumoto 1996] and with Kim [Kim and
Matsumoto 1999], analyzed the parameters of the trade-off. In 1982, Rivest [Den-
ning 1982] suggested an optimization based on distinguished points (DP) which
greatly reduces the amount of look-up operations which are needed to detect a
matching end point in the table. Distinguished points are keys (or ciphertexts)
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that satisfy a given criterion, e.g., the last n bits are all zero. In this variant, chains
are not generated with a given length but they stop at the first occurrence of a
distinguished point. This greatly simplifies the cryptanalysis. Indeed, during the
attack, instead of looking up each Yi that is generated on the chain from C, keys
are generated until a distinguished point is found and only then a look-up is carried
out in the table. If the average length of the chains is t, this optimization reduces
the amount of look-ups by a factor t. Because merging chains significantly degrades
the efficiency of the trade-off, Borst, Preneel, and Vandewalle [Borst et al. 1998]
suggested to clean the tables by discarding the merging and cycling chains. This
new kind of tables, called perfect table, substantially decreases the required mem-
ory. Later, Standaert, Rouvroy, Quisquater, and Legat [Standaert et al. 2002] dealt
with a more realistic analysis of distinguished points and also proposed an FPGA
implementation applied to DES with 40-bit keys. Distinguished points can also be
used to detect collisions when a function is iterated, as proposed by Quisquater and
Delescaille [Quisquater and Delescaille 1989], and van Oorschot and Wiener [Wiener
and van Oorschot 1999]. In 2000, Biryukov and Shamir [Biryukov and Shamir 2001]
suggested a new variant of trade-off where a set of values to invert is given, instead
of a single value. This variant called time-memory-data trade-off has been studied
since then by Biryukov, Mukhopadhyay, and Sarkar [Biryukov et al. 2005], Hong
and Sarkar [Hong and Sarkar 2005].

In 2003, Oechslin [Oechslin 2003] introduced the trade-off based on rainbow tables

and demonstrated the efficiency of his technique by recovering Windows passwords.
A rainbow table uses a different reduction function for each column of the table.
Thus, two different chains can merge only if they have the same key at the same
position in the chain. This makes it possible to generate much larger tables. Actu-
ally, a rainbow table acts almost as if each column of the table was a separate single
classic1 table. Indeed, collisions within a classic table (or a column of a rainbow
table) lead to merges whereas collisions between different classic tables (or different
columns of a rainbow table) do not lead to a merge. This analogy can be used to
demonstrate that a rainbow table of mt chains of length t has the same success
rate as t single classic tables of m chains of length t. Like the trade-off based on
distinguished points, rainbow tables reduce the amount of look-ups by a factor of t,
compared to the classic trade-off. Recently, an FPGA implementation of rainbow
tables has been proposed by Mentens, Batina, Preneel, and Verbauwhede [Mentens
et al. 2005] in order to retrieve Unix passwords.

In [Barkan et al. 2006], Barkan, Biham, and Shamir describe a general model of
cryptanalytic time-memory tradeoffs that includes all the known schemes. They
introduce the concept of hidden state (which can be assimilated as the table number
in Hellman’s scheme or the color in the Rainbow scheme), and they observe that
almost all the online running time is spent to discover the value of the hidden state.
Once this value is found, the online phase needs only about a square root of the
running time to complete the task. Using their very general model and under some
natural assumptions about the behavior of the running phase, they formally show
that no cryptanalytical time-memory tradeoff which are asymptotically better than
existing ones can exist, up to a logarithmic factor.

1By classic we mean the tables as described in the original Hellman’s paper.
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This paper formalizes and extends our results that appear in [Avoine et al. 2005],
and especially focuses on the analysis of the perfect tables. The resultant contri-
bution is threefold:

—Perfect Table Analysis. We provide a thorough analysis of perfect rainbow,
classic and DP tables. For each of them, we provide the expected maximum table
size and success rate, and we give the expected cryptanalysis time. This leads
to simple formula that allow to compute the optimal parameters of the trade-off.
Up until now, calculations were always based on non-perfect tables, in the worst
case (i.e., the key is not found in any table) and ignoring the amount of work due
to false alarms. Optimizations have been proposed with these limitations, but
to our knowledge, it is the first time that the average amount of work is used to
find optimal parameters.

—Trade-Off Characteristic. Using our results on perfect tables, we introduce
the concept of characteristic that allows to measure the intrinsic quality of a
trade-off and thus to compare the different variants of trade-off. Up to our
knowledge, that is the first time such a metric is proposed. We then compute the
characteristics of classic, DP, and rainbow tables and show that rainbow tables
outperform both classic tables and DP tables for high success rates.

—Checkpoints. Whether it is the classic, DP, or rainbow trade-offs, they all
suffer from a significant quantity of false alarms. As we will develop below, false
alarms may increase the time complexity of the cryptanalysis by more than 50%,
contrarily to what is claimed in Hellman’s original paper. Our technique is based
on checkpoints, which are some positions on the chains where a test is applied.
Such a test is typically a parity check that allows to rule out false alarms without
regenerating the chains from scratch. We establish a formula to compute the
exact checkpoint efficiency on rainbow tables, and illustrate our technique by a
numerical example.

2. PERFECT TABLE ANALYSIS

The key to an efficient trade-off is to ensure that the available memory is used most
efficiently. Consequently, the use of memory to store chains that contain elements
which are already part of other chains should be avoided. To do so, more chains
than actually needed are generated and then merging chains are removed. The
resulting tables are called perfect tables [Borst et al. 1998]. Perfect classic and
perfect DP tables are thus made of unique elements. In perfect rainbow tables,
no element appears twice in any given column, but it may appear more than once
across different columns.

Creating perfect rainbow and perfect DP tables is easy since merging chains can
be detected by their identical end points. Since end points need to be sorted to
facilitate the look-ups, identifying the merges comes for free. Classic chains do not
have this advantage. Every single element of every classic chain that is generated
has to be looked up in all elements of all chains of the same table. This requires mtℓ
look-ups in total where ℓ is the number of stored tables. In all trade-off variants,
there is a limit to the size of the perfect tables. The brute-force way of finding the
maximum number of chains of given length t that will not merge is to generate a
chain from each of the N possible keys and remove the merges.
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Below, we consider a problem of size N and we use a time-memory trade-off with
M elements of memory. We denote t, m, and ℓ the parameters of the trade-off,
which are respectively the length of the chains constituting the tables, the number
of chains per table, and the number of tables. The probability that the trade-off
succeeds with a single table is denoted by P and the probability that the trade-off
succeeds with ℓ tables is denoted by P ∗. For the sake of clarity, we will usually call
P ∗ the success rate of the trade-off.

2.1 Rainbow Tables

The fastest cryptanalysis time is reached by using the largest possible perfect ta-
bles. This reduces the amount of duplicate information stored in the table and
reduces the number of tables that have to be searched. Theorem 1 gives the ex-
pected maximum number of chains per table and Theorem 2 gives the expected
maximum probability of success of a single table. These theorems lead to Corol-
lary 1, which provides the optimal parameters that yield the largest perfect rainbow
tables. Finally, Theorem 3 gives the average cryptanalysis time2.

Theorem 1. Given t and a sufficiently large N , the expected maximum number

of chains per perfect rainbow table without merge is:

mmax(t) ≈
2N

t + 1
.

Proof. For a given chain length t, the expected maximum number mmax(t) of
rainbow chains that can be generated without merges is obtained by calculating
the expected number of distinct keys in column t, if we start the generation with
N keys in the first column. Here, the probability space under consideration is the
set of all NN functions on N elements equipped with the uniform distribution. Let
mi denote the number of distinct keys in column i. By definition, we have m1 = N
and mmax(t) = mt. When 0 < i < t, we can easily find out a recurrence relation
on mi:

mi+1 = N

(

1 −

(

1 −
1

N

)mi
)

,

which can be approximated by

mi+1 = N
(

1 − e−
mi

N

)

.

Using the Taylor approximation of the exponential, we get:

mi+1 ≈ N

(

mi

N
−

m2
i

2N2

)

= mi −
m2

i

2N
,

which is accurate for small m or non small i. We can transform this expression into
a differential equation

dmi

di
= −

m2
i

2N
,

2Results given in this section appear in an informal way in [Avoine et al. 2005]. Theorem 1 also
corrects the erroneous formula provided in [Avoine et al. 2005]
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whose solution is:

mi =
2N

i + c
.

Since m1 = N we get c = 1, which finally yields

mmax(t) ≈
2N

t + 1
.

Theorem 2. Given t, for any problem of size N , the expected maximum proba-

bility of success of a single perfect rainbow table is:

Pmax(t) ≈ 1 −

(

1 −
2

t + 1

)t

which tends toward 1 − e−2 ≈ 86% when t is large.

Proof. From [Oechslin 2003], we know that the probability of success of a single
un-perfect rainbow table is 1−

∏t
i=1

(

1 − mi

N

)

. With perfect rainbow tables, we have
mi = m for all i such that 1 ≤ i ≤ t. The probability of success of a single perfect
rainbow table is therefore:

1 −
(

1 −
m

N

)t

,

which is maximum when m = mmax(t). Thus:

Pmax(t) = 1 −

(

1 −
mmax(t)

N

)t

.

From Theorem 1, we deduce the expected maximum probability of success of a
single perfect rainbow table containing mmax(t) chains:

Pmax(t) ≈ 1 −

(

1 −
mmax(t)

N

)t

= 1 −

(

1 −
2

t + 1

)t

which tends toward 1 − e−
2t

t+1 ≈ 1 − e−2 ≈ 86% for non small t.

Corollary 1. Given M , N , and P ∗, the optimal parameters of the trade-off

that minimize the cryptanalysis time are:

ℓ =

⌈

− ln(1 − P ∗)

2

⌉

, m =
M

ℓ
, and t =

ln(1 − P ∗)

ln(1 − M
ℓN )ℓ

≈
−N

M
ln(1 − P ∗).

Proof. We first search the number of tables ℓ such that the success rate of the
trade-off is at least P ∗. Since Pmax(t) is the expected maximum probability of
success of a single table, we have:

1 − (1 − Pmax(t))
ℓ ≥ P ∗. (1)

Using Theorem 2, (1) yields:

e−2ℓ ≤ (1 − P ∗)

and therefore

ℓ =

⌈

− ln(1 − P ∗)

2

⌉

. (2)
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We deduce m and t from (2):

m =
M

ℓ
and t =

ln(1 − P ∗)

ln(1 − M
ℓN )ℓ

≈
−N

M
ln(1 − P ∗).

Interestingly, Corollary 1 shows that the smallest number of tables needed for a
trade-off only depends on the desired success rate P ∗. This makes the selection of
optimal parameters very easy.

Given the optimal parameters of the trade-off, we now calculate the exact amount
of work required during the on-line phase.

Theorem 3. Given N , m, ℓ, and t, the average cryptanalysis time is:

T =

k=ℓt
∑

k=1

c=t−⌊
k−1

ℓ
⌋

pk

(

(t − c)(t − c + 1)

2
+

i=t
∑

i=c

qii

)

ℓ+(1−
m

N
)ℓt

(

t(t − 1)

2
+

i=t
∑

i=1

qii

)

ℓ

where

qi = 1 −
m

N
−

i(i − 1)

t(t + 1)
.

Proof. Cryptanalysis with a set of rainbow tables is done by searching for the
key in the last column of each table and then searching sequentially through previ-
ous columns of all tables. There are thus a maximum of ℓt searches. We calculate
below the probability of success and the probability of false alarm for each search
k. Then we compute the expected cryptanalysis effort.

Computing the probability of success pk during search k is straightforward: it is
simply a geometric law:

pk =
m

N

(

1 −
m

N

)k−1

. (3)

The probability of a false alarm during search k does not depend on which table
the search is being carried out, but only on which column the search is being carried
out. Thus, we denote qc the probability of a false alarm during search k, where
c = t −

⌊

k−1
ℓ

⌋

is the position of the column counted from the end of the chain.
To determine qc, we notice that we generate a chain from a given ciphertext and
look-up the end of the chain in the table. Thus, we can (a) either not find a
matching end, (b) find the end of the correct chain or (c) find an end that leads to
a false alarm. These three events are the only possible outcomes. The probability
of finding the end of the correct chain within the m chains is:

m

N
. (4)

The probability of not finding an end point is the probability that all generated
keys are not part of the chains that lead to the end points (at column i, these are
the mi chains that we used to build the table), that is:

i=t
∏

i=c

(

1 −
mi

N

)

(5)
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where mt = m and mi−1 = −N ln(1 − mi

N ). Using (4) and (5), we deduce that the
probability of a false alarm during search k is:

qc = 1 −
m

N
−

i=t
∏

i=c

(

1 −
mi

N

)

(6)

When the tables have exactly the maximum number of chains, (6) can be rewritten
as a closed form, by replacing mi by mmax(i):

qc = 1 −
m

N
−

i=t
∏

i=c

(

1 −
mmax(i)

N

)

= 1 −
m

N
−

c(c − 1)

t(t + 1)
.

We now find out the expected cryptanalysis time T . For that, we notice that T
corresponds to the work that is being carried out during the tℓ searches and the
work that is being carried out every time no key is found in the table. The latter
work is simply:

(1 −
m

N
)ℓt (W (t) + Q(1)) ℓ (7)

where W (x) represents the work needed to generate a chain until matching a end
point and Q(x) represents the work to rule out a false alarm. When searching a
key at position c of a table, the amount of work to generate a chain that goes from
position c to the end of the table is t− c. The additional amount of work due to a
possible false alarm is c− 1 since the chain has to be regenerated from the start to
position c in order to rule out the false alarm. Thus

W (c) =

i=t
∑

i=c

(t − c) (8)

and

Q(c) =

i=t
∑

i=c

qi(i − 1). (9)

We compute in the same vein the work carried out during the search from 1 to tℓ:

k=ℓt
∑

k=1

c=t−⌊ k−1
ℓ

⌋

pk (W (t − c) + Q(c)) ℓ. (10)

From (7) and (10), we obtain:

T =

k=ℓt
∑

k=1

c=t−⌊ k−1
ℓ

⌋

pk (W (c) + Q(c)) ℓ + (1 −
m

N
)ℓt (W (t) + Q(1)) ℓ. (11)
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Finally, rewriting (11) using (8) and (9), we obtain:

T =

k=ℓt
∑

k=1

c=t−⌊ k−1
ℓ

⌋

pk

(

i=t−c
∑

i=1

i +

i=t
∑

i=c

qii

)

ℓ + (1 −
m

N
)ℓt

(

i=t
∑

i=1

i +

i=t
∑

i=1

qii

)

ℓ

=

k=ℓt
∑

k=1

c=t−⌊ k−1
ℓ

⌋

pk

(

(t − c)(t − c + 1)

2
+

i=t
∑

i=c

qii

)

ℓ + (1 −
m

N
)ℓt

(

t(t − 1)

2
+

i=t
∑

i=1

qii

)

ℓ

To illustrate Theorem 3, Table I provides the theoretical and practical results
when the size of the problem is N = 7.056 × 1012, the length of the chains is
t = 20479, the number of chains per table is m = 318422430, and the number of
tables is ℓ = 4.

N = 7.056 × 1012, t = 20479,
m = 318422430, ℓ = 4

theory measured over 1000
experiments

encryptions (average) 1.74 × 108 1.78 × 108

encryptions (worst case) 1.05 × 109 1.05 × 109

number of false alarms (average) 4481 4729

number of false alarms (worst case) 30274 30309

Table I. Calculated and measured performance of rainbow tables

In [Barkan et al. 2006], Barkan, Biham, and Shamir cite the original rainbow
table paper [Oechslin 2003] saying that in the worst case, rainbow tables are two
times more efficient. Then they explain that distinguished points can be stored
with half as many bits than endpoints from rainbow tables, thus making up for
the advantage of rainbow tables. The citation is unfortunate because the paper
says that the gain must be at least a factor of two due to the structure of the
tables and explains other aspects of rainbow tables that lead to a factor of 12 in
the given example. Also our characteristics graph shows that this factor can be
arbitrarily increased by choosing a higher success rate. The argument also fails
to take into account that storage of rainbow tables can also be optimized. Indeed
for both trade-offs the m starting points can be stored with log2(m) bits each,
since the starting points can be arbitrarily chosen. With distinguished points the
endpoints can be stored without the information that makes them distinguished
(e.g. a fixed suffix). With rainbow tables, the endpoints are stored as a long sorted
list of random elements of N . A simple way of reducing the memory requirement
of the list is to only store the least significant bits of each element and to build
an index that points to the ranges of elements corresponding to each value of the
remaining bits. In this case, the fact that rainbow tables have many more chains
than tables from other trade-offs allows for a more efficient use of this technique.
Although the exact values depend on all parameters of the trade-off and on the
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complexity of the chosen representation, it is certainly no the case that rainbow
tables need twice as many bits for storage as distinguished points.

2.2 Perfect Classic Tables

Although classic tables have been studied extensively, e.g., in [Kim and Matsumoto
1999] and [Kusuda and Matsumoto 1996], perfect classic tables have never been
in the spotlight. We provide below the expected cryptanalysis time of such tables
in terms of encryption operations, missing thus the fact that classic tables need t
times more table look-ups than other variants. Theorem 4 and Theorem 5 estab-
lish respectively the probability of success of a single perfect classic table and the
expected cryptanalysis time.

Theorem 4. Given N , m, and t, the expected probability of success of a single

perfect classic table is:

P =
mt

N
.

Proof. The proof if straightforward since the mt keys of such a table are dis-
tinct.

Theorem 5. Given N , m, ℓ, and t, the average cryptanalysis time of classic

tables is:

T = t

k=ℓ
∑

k=1

k
mt

N

(

1 −
mt

N

)k−1

.

Proof. To find a key in a set of tables we have to search for it in each table in
sequence. An interesting fact about perfect classic tables is that it always takes t
operations to search a key (a) when we find it, (b) when we do not find it, and even
(c) when we have a false alarm. (a) When we find the key, we execute i operations
until we find the matching end of chain, and then execute t − i operations from
the start of the chain to recover the key. (b) When we do not find the key, we just
carry out t operations and never find a matching key. (c) A false alarm triggers the
same sequence of operations than when we find the key, the difference is just that
the key does not match. Note, however, that when a false alarm occurs, we need
not search further in the table. If a key is in the table we can only find the correct
end of chain since there can be no other chain that merges into the correct chain.
Thus if a false alarm occurs, we know that the key is not in the table. The work
we just spent verifying the false alarm is regained by not having to search further
in this table. As a result, the number of operations for searching a key in a set of
ℓ tables of m chains of length t is t times the average number of tables we have to
search. Since each table has the same probability of containing the key and there
is a finite number of tables, we have a truncated geometric distribution and thus,
the average cryptanalysis time is simply:

T = t

k=ℓ
∑

k=1

kP (1 − P )
k−1

.

Using Theorem 4, we find the expected result.
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Note that if the number of tables is such that the success rate is close to one, we
can approximate the distribution with an untruncated one and find T = N

m .
To find the optimal performance of perfect classic tables we need now to find

the maximum size of such tables. Unfortunately the calculation of the maximum
number of non-merging chains of length t that can be generated is non-trivial.
Therefore, we take an experimental approach and use the following strategy to
generate a maximum of non-merging chains: starting from an initial element we
generate a sequence of concatenated chains until a merge occurs with a chain which
has already been generated. We then simply choose a random starting point and
generate a new sequence of chains. The goal of this strategy is to avoid gaps between
chains that are not a multiple of the chain length. Indeed, if all chains were to start
at random points the space of possible chains would be more fragmented, leaving
many short sequences of points that are shorter than a chain length and that can
thus not be covered by a chain that does not merge with another one. We have
experimented our strategy in a space of 10 million keys with various chain lengths.
Experimental results shown in Table II indicate that the number of chains is roughly
proportional to the inverse of t2.

t
′ 10 20 30 40 50 100 200 400

m 229713 67719 32243 18766 12256 3190 816 195

Table II. The maximum number of chains decreases roughly with the square of the chain length
(here N = 107)

2.3 Perfect DP Tables

Theorem 6. Given N and t′, where t′ is the average chain length or the inverse

of the probability to find a distinguished point, the expected maximum number of

chains per perfect table without merge is:

mmax(t
′) =

N

t′
(1 − e−1).

Proof. From the proof of Theorem 1, we know that the size of the image of a set
mapped onto itself is 1−e−1 times the size of the set, when it is sufficiently large. If
we consider that each chain maps a distinguished point into another distinguished
point, the number of chains of such a table is equal to 1− e−1 times the number of
distinguished points. The number of distinguished points being N

t′ , we have

mmax(t
′) =

N

t′
(1 − e−1).

Theorem 7. Given N , m, and t′, the expected maximum probability of success

of a single DP table is

Pmax(t
′) =

t′′

t′
(1 − e−1)

where t′′ is the average chain length after merges have been removed.
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Proof. The proof is straightforward: each table contains mmax(t
′)t′′ keys on

average, so Pmax(t
′) = mmax(t′)t′′

N . From Theorem 6, we deduce that

Pmax(t
′) =

mmax(t
′)t′′

N
=

t′′

t′
(1 − e−1).

The non trivial part is to find out the average chain length of the perfect chains
after the merges have been removed. Because they have more opportunities to do
so, longer chains will more often merge with other chains thus clumping into large
trees of long chains. When removing the merges, longer chains are thus removed
more often than short ones, resulting in a reduced average length of the perfect
chains.

We have computed the expected maximum chain length of DP tables by mea-
suring a sequence of experiments. In a problem of size 107 we have chosen various
average chain lengths t′ and generated chains starting at each of the 107 keys. For
all chains that merged, we have only kept the longest one (as suggested in [Borst
et al. 1998] and [Standaert et al. 2002]) to create perfect tables. Table III illustrates
the situation for various initial chain lengths.

t
′

m (theory) m (measured) t
′′ (measured)

10 632120 630018 4.92

25 252848 252559 7.32

50 126424 126740 7.31

100 63212 63168 7.31

Table III. Maximum number of non-merging chains m in theory and experiment and average chain
length before (t′) and after (t′′) removing merges in DP tables, for N = 107

3. TRADE-OFF CHARACTERISTIC

In this section we introduce a generic way of characterizing the different trade-offs
and so comparing them.

3.1 Rainbow Tables

From Section 2, we know how to calculate the success rate and the cryptanalysis
time of trade-off using rainbow tables. Thus, given a success rate, we plot the
cryptanalysis time according to the memory size. Figure 1 shows that cryptanalysis
time decreases with the square of the memory size, independently of the success
rate. We can thus write the time-memory relation as:

T =
N2

M2
γ(P ∗) (12)

where γ(P ∗) is a factor that depends only on the success probability. It is interesting
to note that for P ∗ = 86% which is the expected maximum probability of success
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Fig. 1. Cryptanalysis time for rainbow tables, with various success rates

of a single rainbow table, the factor is equal to 1. In that case we find the typical
trade-off which was already described by Hellman, that is M = T = N

2
3 .

We now need a criterion to compare the trade-offs. We propose to use γ(P ∗)
as the trade-off characteristic. The evolution of γ over a range of P ∗ shows how a
variant is better than another. Figure 2 shows a plot of γ(P ∗) for rainbow tables.
On the curve, a step occurs every time an additional table has to be used to achieve
the given success rate.

In the following section, we compare the characteristic of rainbow tables with
those of classic and DP tables.

3.2 Classic and DP Tables

The trade-off using classic or DP tables can also be characterized using the γ
factor. Indeed both trade-offs follow the T ∝ N2/M2 relation in a large part of the
parameter space up to a factor which depends of the success rate and the type of
trade-off. Thus, Figure 3, relying on Table II and Theorem 5, shows that classic
tables have the same T ∝ N2/M2 relation as rainbow tables if the success rate
is not too small and the memory not too large. Note that in order to plot the
graphs, the strategy is to use as many tables as required in order to reach the
expected probability P ∗. For large memories and small gains in time the trade-off
can be implemented with one single perfect table. In that case the trade-off relation
becomes T ≈ N/M . We also notice on this graph that there are no solutions for
small M . This is due to the fact that small memory implies long chains and perfect
chains tend to loop when they get long. Actually, a well known result from hash
table generation is that we can generate an average of

√

π
2 #H hashes until we get

a first collision. Here #H denotes the cardinality of the output space of the hash
function. This means that we cannot have a configuration where t is larger than
this value.
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Fig. 2. Rainbow table characteristic.
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Fig. 3. Cryptanalysis time for classic tables, with various success rate

DP tables also follow the relation T ∝ N2/M2. This is illustrated on Figure 4.
The characteristics of the rainbow, DP, and classic tables are depicted on Figure 5.

It shows that perfect DP tables perform much worse than the other two variants,
while rainbow tables outperform classic tables and DP tables for success rates above
80%. Below this limit, perfect classic tables are slightly better than perfect rainbow
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Fig. 4. Cryptanalysis time for DP tables, with various success rate

tables in terms of hash operations needed for cryptanalysis. However, the price of
using classic tables is that they need t times more table look-ups. Since these do
not come for free in most architectures (content addressable memory could be an
exception), rainbow tables seem to be the best option in any case.
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Fig. 5. Characteristics of rainbow, classic and DP tables compared.

ACM Transactions on Information and System Security, Vol. V, No. N, Month 20YY.



16 · G. Avoine, P. Junod, and Ph. Oechslin

4. CHECKPOINTS

4.1 False Alarms

We saw that given a ciphertext C = SK(D), the on-line phase of the cryptanalysis
works as follows: R is applied on C in order to obtain a key Y1, and then the
function f is iterated on Y1 until matching any Ej . Let s be the length of the
generated chain from Y1:

C
R
→ Y1

f
→ Y2

f
→ . . .

f
→ Ys

Then the chain ending with Ej = Ys is regenerated from Sj until yielding the
expected key K. Unfortunately K is not in the explored chain in most of the cases.
Such a case occurs when R collides: the chain generated from Y1 merged with the
chain regenerated from Sj after the column where Y1 is. Such a case, so-called false
alarm, requires (t − s) encryptions to be detected.

Hellman [Hellman 1980] points out that the expected computation due to false
alarms increases the expected computation by at most 50 percent. This reasoning
relies on the fact that, for any i, f i(Y1) is computed by iterating f i times. However
f i(Y1) should be computed from Yi because f i(Y1) = f(Yi). In this case, the com-
putation time required to reach a chain’s end is significantly reduced on average
while the computation time required to rule out false alarms remains unchanged.
Therefore, false alarms can increase by more than 50 percent the expected com-
putation. For example, Theorem 3 allows to show that the computation wasted
during the recovering of Windows passwords [Oechslin 2003] due to false alarms
increase by 125% the expected computation.

4.2 Ruling Out False Alarms Using Checkpoints

In order to rule out false alarms, our idea consists in defining a set of positions
αi in the chains to be checkpoints. We calculate the value of a given function
G for each checkpoint of each chain j and store these G(Xj,αi

) with the end of
each chain Xj,t. During the on-line phase, when we generate Y1, Y2, . . . , Ys, we also
calculate the values for G at each checkpoint, yielding the values G(Yαi+s−t) . If
Ys matches the end of a chain that we have stored, we compare the values of G
for each checkpoint that the chain Y has gone through with the values stored in
the table. If they differ at least for one checkpoint we definitely know that this is
a false alarm. If they are identical, we cannot determine if a false alarm occured
without regenerating the chain.

In order to be efficient, G should be easily computable and the storage of its
output should require few bits. Below, we consider the function G such that G(X)
simply outputs the less significant bit of X . Thus we have:

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} =
1

2

(

1 −
1

2|K|

)

≈
1

2
.

Note that the case Xj,α 6= Yα+s−t occurs when the merge appears after the column
α (Figure 6), while the case Xj,α = Yα+s−t occurs when either K appears in the
regenerated chain or the merge occurs before the column α (Figure 7).
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Fig. 6. False alarm detected with probability 1/2
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Fig. 7. False alarm not detected

4.3 Checkpoints in Rainbow Tables

Theorem 8 considers only one checkpoint and Corollary 2 extends this result to t
checkpoints.

Theorem 8. Given N , m, t, and a checkpoint α, the work to rule out a false

alarm when searching in column x is:

Q(x) =

i=t
∑

i=x

(i − 1) (qi − qα · gα(t − i)) ,

where

qc = 1 −
m

N
−

(c − 1)c

t(t + 1)

and

gα(s) =















0 if there is no checkpoint in column α,

0 if (α + s) ≤ t, i.e. the chain generated from Y1 does not reach column α,

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} otherwise.

Proof. Let Y1 . . . Ys be a chain generated from a given ciphertext C. From (6),
we know that the probability that the chain Y1 . . . Ys merges with a stored chain is
qt−s+1. The expected work due to a false alarm is therefore qt−s+1(t − s).

We now compute the probability that the checkpoint detects the false alarm. If
the merge occurs before the checkpoint (Figure 7) then the false alarm cannot be
detected. If the chain is long enough, i.e., α + s > t, the merge occurs after the
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checkpoint (Figure 6) with probability qα. In this case, the false alarm is detected
with probability Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t}.

Given gα(s),

gα(s) =















0 if there is no checkpoint in column α,

0 if (α + s) ≤ t, i.e. the chain generated from Y1 does not reach column α,

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} otherwise,

we can rewrite Q(x) as follows:

Q(x) =

i=t
∑

i=x

(i − 1) (qi − qα · gα(t − i)) ,

where qα · gα(t − i) is the work saved by the checkpoints.

Corollary 2 extends the results to several checkpoints.

Corollary 2. Given N , m, t, and some checkpoints, the work to rule out a

false alarm when searching in column x is:

Q(x) =

i=t
∑

i=x

i



qi − qi · gi(t − i) −

j=t
∑

j=i+1

(

qj · gj(t − j)

k=j−1
∏

k=i

(1 − gk(t − k))

)



 .

where

qc = 1 −
m

N
−

c(c − 1)

t(t + 1)

and

gα(s) =















0 if there is no checkpoint in column α,

0 if (α + s) ≤ t, i.e. the chain generated from Y1 does not reach column α,

Pr{G(Xj,α) 6= G(Yα+s−t) | Xj,α 6= Yα+s−t} otherwise.

Proof. The proof is similar to those of Theorem 8, except that each checkpoint
must take into account whether or not the previous checkpoints detected the false
alarms.

4.4 Numerical Results

We use our technique to crack3 Windows passwords, as proposed in [Oechslin 2003].
In this example the parameters are N = 8.06 × 1010, t = 10000, m = 15408697,
ℓ = 4, the function to invert is DES, and we use the function G as defined previously.
In order to evaluate the performance of the checkpoints, we define the time gain of
a trade-off over another trade-off. Let M , T , N and M ′, T ′, N ′ be the parameters
of two trade-offs respectively, we define σT as follows:

T ′ = σT · T.

3http://lasecwww.epfl.ch/∼oechslin/projects/ophcrack/
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The time gain of the second trade-off over the first one is straightforwardly defined
by:

(1 − σT ) = 1 −
T ′

T
.

Figure 8 depicts both theoretical and experimental time gain of the rainbow tables
with one checkpoint over the rainbow tables without checkpoints.
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Fig. 8. Theoretical and experimental gain when one checkpoint is used

However, storing checkpoints consumes memory, which is not taken into account
in the previous results. Consequently, in order to evaluate the real performance of
the checkpoints, we define the memory cost of a trade-off over another trade-off.
Let M , T , N and M ′, T ′, N ′ be the parameters of two trade-offs respectively, we
define σM as follows:

M ′ = σM · M.

The memory cost of the second trade-off over the first one is straightforwardly
defined by:

(σM − 1) =
M ′

M
− 1.

Thus, given a memory cost, we can compare the time gains when the additional
memory is used to store chains and when it is used to store checkpoints. When a
trade-off stores more chains, it implies a memory cost but, given that T ∝ N2/M2,
it also implies a time gain which is:

(1 −
T ′

T
) = 1 −

1

σ2
M

.

Instead of storing additional chains, the memory cost can be used to store check-
points as we has seen above. The time gain of these two techniques are given in
Table IV. Results are amazing: an additional 0.89% of memory saves about 10.99%
of cryptanalysis time when the memory is used to store checkpoints, which is six
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Number of checkpoints 1 2 3 4 5 6

Memory Cost 0.89% 1.78% 2.67% 3.57% 4.46% 5.35%

Gain (store chains) 1.76% 3.47% 5.14% 6.77% 8.36% 9.91%

Gain (store checkpoints) 10.99% 18.03% 23.01% 26.76% 29.70% 32.04%

Optimal checkpoints 8935

± 5

8565
9220

± 5

8265
8915
9370

± 5

8015
8655
9115
9470

± 5

7800
8450
8900
9250
9550

± 50

7600
8200
8700
9000
9300
9600

± 100

Table IV. Cost and gain of using checkpoints in password cracking, with N = 8.06 × 1010, t =
10000, m = 15408697, and ℓ = 4

times more than the 1.76% of gain that are obtained by using the same amount of
memory to store additional chains.

Our checkpoints thus perform much better than the basic trade-off. As we add
more and more checkpoints, the gain per checkpoint decreases. In our example it
is well worth to use 6 bits of checkpoint values (5.35% of additional memory) per
chain to obtain a gain of 32.04%.

The 0.89% of memory per checkpoint are calculated by assuming that the start
and the end of the chains are stored in 56 bits each, as our example uses DES
keys. However, the memory required to store the chains can be reduced using a
few homemade techniques. In our Windows password example, there are about 237

keys of 56 bits. Instead of storing the 56 bits, we store a 37 bit index, as suggested
in [Biryukov et al. 2000]. From this index we take 21 bits as prefix and store only
the last 16 bits in memory. We also store a table with 221 entries that point to
the corresponding suffixes for each possible prefix. Since rainbow tables allow us
to choose the starting points at will, we can use keys with increasing value of their
index. We use about 300 million starting points. This value can be expressed
in 29 bits, so we only need to store the 29 lower bits of the index. The total
amount of memory needed to store a chain is thus 29 + 16 bits for the start and
the end. The table that relates the prefixes to the suffixes incurs about 3.5 bits
per chain. Altogether we thus need 49 bits per chain4. With these improvements,
a bit of checkpoint data adds 2% of memory, but it is still well worth using three
checkpoints of one bit each to save 23% of work.

Finally, for reasons of efficiency of memory access it may in some implementations
be more efficient to store the start and the end of a chain (that is, its suffix) in
multiples of 8 bits. If the size of some parameters does not exactly match the size
of the memory units, the spare bits can be used to store checkpoints for free. In
our case, the 29 bits of the chain start are stored in a 32 bit word, leaving 3 bits

4A simple implementation that stores the full 56 bits of the start and end chain would need 2.25
times more memory and be 5 times slower.
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available for checkpoints.

5. CONCLUSION

We provided in this paper a thorough analysis of cryptanalytic time-memory trade-
offs using perfect tables. For rainbow, DP, and classic variants, we supplied formulas
to compute the optimal parameters that allows to reach the expected minimum
cryptanalysis time. We also introduced the trade-off characteristic, which evaluates
the trade-off efficiency. Finally, we introduced a new technique based on checkpoints
that aims at reducing the time wasted to detect false alarms. We show that this
technique has a real impact in practice.

We saw that computing formally the maximum table size and the average chain
length in classic tables and DP tables respectively, is still an open work. Leading
research on these questions may improve our knowledge on the behavior of cryptan-
alytic trade-offs. Another track to explore is the trade-off evaluation when look-ups
cost is taken into account.
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