Attacks against TSC

Simon Künzli, Pascal Junod*, Willi Meier

Paris (France), February 21st, 2005
TSC Stream Ciphers

- TSC-1 / TSC-2: proposed by Hong, Lee, Yeom, and Han at FSE’05 / SASC’04
- Structure:
More precisely...

\[
x^t = \begin{pmatrix}
1 & 0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & 0 & \cdots & 0 & 1 \\
0 & 0 & 1 & 1 & \cdots & 1 & 1
\end{pmatrix}
\]

- State \(x^t \) updated by an odd parameter \(\alpha(.) \) (which is a kind of T-function).
- \(\alpha(x) = (p + C) \oplus p \oplus 2s \) where \(C = 0x12488421 \), \(p = x_0 \land x_1 \land x_2 \land x_3 \), and \(s = x_0 + x_1 + x_2 + x_3 \).
- If \([\alpha^t]_i = 0 \), then \([x^{t+1}]_i \leftarrow \text{sbox} \left(\text{sbox} \left([x^t]_i \right) \right) \).
- Otherwise, \([x^{t+1}]_i \leftarrow \text{sbox} \left([x^t]_i \right) \)
- Output function: \(f(x) = (x_0 \ll 9 + x_1) \ll 15 + (x_s \ll 7 + x_3) \).
sbox(a) = \{3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12\}

- Single cycle S-box: sbox^{16}(a) = a
- Designed such that
 \forall i, \Pr \left[[a \oplus sbox(a)]_i = 0\right] = \Pr \left[[a \oplus sbox^2(a)]_i = 0\right] = \frac{1}{2}
- But: we observed that for \(\delta \equiv 0 \pmod{4}, \)
 \forall i, \Pr \left[[a \oplus sbox^\delta(a)]_i = 0\right] = \frac{1}{2} + \varepsilon \text{ with } |\varepsilon| \gg 0.
We know that the event defined by $X_\delta = 1$ iff $[a]_i = \text{sbox}^\delta([a]_i)$ is biased for some δ’s.

Idea: look for (biased) events defined by $Y_\Delta = 1$ iff $[x^t_j]_i = [x^{t+\Delta}_j]_i$.

We observed that $\Pr[Y_{11} = 1] \approx 0.6007$ and that $\Pr[Y_8 = 1] \approx 0.4004$.

Due to the specific output function: repeating bits in the state result in repeating bits in the keystream (for instance $\text{lsb}(y^t \oplus y^{t+8})$).

Data complexity: 2^{22} words of keystream required to distinguish it from a perfect random sequence.
• Think about a perfect (but non-existing) single-cycle S-box, i.e., perfectly balanced for all $\delta < 16$.

• In that case, we are still able exploit the event that the S-box was applied 16 times.

• Going through the output function is more complicated but doable.
\(\alpha(.)\): instead of two applications of the S-box, one applies the *identity mapping*.

Small size of \(\alpha(.)\): 32-bit state drives the behaviour of a 128-bit state. This is a *problem*.

We have to wait until a “nice” output of \(\alpha(.)\) occurs and to exploit it.
Thank You!