Attacks against TSC

Simon Künzli, Pascal Junod*, Willi Meier

Paris (France), February 21st, 2005

TSC Stream Ciphers

- TSC-1 / TSC-2: proposed by Hong, Lee, Yeom, and Han at FSE'05 / SASC'04
- Structure:

More precisely...

- State x^t updated by an *odd parameter* $\alpha(.)$ (which is a kind of T-function).
- $\alpha(x) = (p + C) \oplus p \oplus 2s$ where C = 0x12488421, $p = x_0 \land x_1 \land x_2 \land x_3$, and $s = x_0 + x_1 + x_2 + x_3$.
- ullet If $[lpha^t]_i=$ 0, then $[oldsymbol{x}^{t+1}]_i\leftarrow \mathrm{sbox}\left(\mathrm{sbox}\left([oldsymbol{x}^t]_i
 ight)
 ight).$
- Otherwise, $[x^{t+1}]_i \leftarrow \operatorname{sbox}([x^t]_i)$
- Output function: $f(x) = (x_{0 \le 9} + x_1)_{\le 15} + (x_{s \le 7} + x_3)$.

S-box

$$\mathsf{sbox}(a) = \{3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12\}$$

- Single cycle S-box: $sbox^{16}(a) = a$
- Designed such that $\forall i, \Pr[[a \oplus \operatorname{sbox}(a)]_i = 0] = \Pr[[a \oplus \operatorname{sbox}^2(a)]_i = 0] = \frac{1}{2}$
- But: we observed that for $\delta \equiv 0 \pmod{4}$, $\forall i, \Pr\left[[a \oplus \operatorname{sbox}^{\delta}(a)]_i = 0\right] = \frac{1}{2} + \varepsilon \text{ with } |\varepsilon| \gg 0.$

Back to the State

- We know that the event defined by $X_{\delta}=1$ iff $[a]_i=\operatorname{sbox}^{\delta}([a]_i)$ is biased for some δ 's.
- Idea: look for (biased) events defined by $Y_{\Delta}=1$ iff $[\boldsymbol{x}_{j}^{t}]_{i}=[\boldsymbol{x}_{j}^{t+\Delta}]_{i}.$
- ullet We observed that $\Pr[Y_{11}=1]pprox 0.6007$ and that $\Pr[Y_8=1]pprox 0.4004$
- Due to the specific output function: repeating bits in the state result in repeating bits in the keystream (for instance $\mathsf{lsb}(y^t \oplus y^{t+8})$).
- Data complexity: 2²² words of keystream required to distinguish it from a perfect random sequence.

Another Attack Independent of the S-box Structure

- Think about a perfect (but non-existing) single-cycle S-box, i.e., perfectly balanced for all $\delta < 16$.
- In that case, we are still able exploit the event that the S-box was applied 16 times.
- Going through the output function is more complicated but doable.

TSC-2

- $\alpha(.)$: instead of two applications of the S-box, one applies the *identity mapping*.
- Small size of $\alpha(.)$: 32-bit state drives the behaviour of a 128-bit state. This is a problem.
- We have to wait until a "nice" output of $\alpha(.)$ occurs and to exploit it.

Thank You!

