
Cryptographic Secure Pseudo-Random Bits

Generation : The Blum-Blum-Shub Generator

Pascal Junod

August 1999

Contents

1 Introduction 3

2 Concept of Pseudo-Random Bit Generator 4

3 The Blum-Blum-Shub Generator 7
3.1 Some number-theoretic preliminaries 7
3.2 Definition of the Blum-Blum-Shub PRBG 14

4 Security of the Blum-Blum-Shub Generator 15
4.1 Introduction . 15
4.2 The proof of security . 15

List of Figures

1 Statistical experiment for the cryptographic security of a PRBG 5
2 Statistical experiment for the next-bit test 6
3 Description of the algorithm B(n, x) 18

2

1 Introduction

Random numbers are critical in every aspect of cryptography. We need such
numbers to encrypt e-mails, to digitally sign documents, for electronic pay-
ment systems, and so on.

Unfortunately, true random numbers are very difficult to generate, espe-
cially on computers that are typically designed to be deterministic. This
brings us to the concept of pseudo-random numbers, which are numbers
generated from some random internal values, and that are very hard for an
observer to distinguish from true random numbers.

It is important to see the difference between the meaning of pseudo-random
numbers in normal programming contexts, like simulation, e.g., where these
numbers merely need to be reasonably random-looking and have good sta-
tistical properties (see [4]), and in the context of cryptography, where they
must be indistinguishable from real random numbers, even to observers with
huge amount of computational resources.

In the context of cryptography, a random number is a number that can-
not be predicted by an observer before it is generated. Typically, if the
number is to be in the range [0..n − 1], an observer cannot predict that
number with probability “slightly” better than 1/n. Or, we will see that
the following is equivalent, if m random numbers are generated in a row,
an observer given any m − 1 of them still cannot predict the m’th with a
probability significantly greater than 1/n.

In this work, we present first the notion of cryptographic secure pseudo-
random bit generators (PRBG) in a formal way by using two different def-
initions. Then a theorem of Yao proving the equivalence of these two defi-
nitions is treated. In a second part, the Blum-Blum-Shub generator, a very
simple and provably secure PRBG, is presented, with all the mathematical
background needed to understand it. In the third part, the proof of its
security is treated in details.

3

2 Concept of Pseudo-Random Bit Generator

We give first an informal definition of a Pseudo-Random Bit Generator:

Definition 1 (Informal Definition)
A Pseudo-Random Bit Generator (PRBG) is a deterministic algorithm which,
given a truly-random binary sequence of length n, outputs a binary sequence
of length l(n) > n which appears to be random, with l() being a polyno-
mial. The input to the PRBG is called the seed, and the output is called a
pseudo-random bit sequence.

We now have to specify what “appears to be random” means. We give two
formal, different definitions of this fact which are equivalent.

In a few words, the first definition says that a PRBG is said to pass all
poly-time statistical tests, and therefore can be considered as a cryptographic
secure PRBG, if no poly-time algorithm can distinguish between an output
sequence of the generator and a truly random sequence with probability
significantly greater than 1/2.

Definition 2 (Cryptographic secure PRBG, [7])
Let g : {0, 1}n −→ {0, 1}l(n) be an efficient (computable in polynomial time)
function ensemble, l() being a polynomial with l(n) > n. Let X and Z
be random variables uniformly distributed respectively on {0, 1}n and on
{0, 1}l(n). Then g is a cryptographic secure PRBG, if for all adversaries A
running in polynomial time the success probability (or distinguishing prob-
ability)

|PX [A(g(X)) = 1]− PZ [A(Z) = 1]| < 1
p(n)

∀p

where p is a polynomial.

The Figure 1 gives an illustration of the statistical experiment suggested by
this definition. A truly random sequence or the output of the generator ini-
tialized with a random seed are given to the adversary, each with a probabil-
ity of 1/2. Then the adversary decides in polynomial time which sequence it
was.

We give now another definition, which says that a PRBG is said to pass
the next bit test if there is no poly-time algorithm which, on input of the
first r ≤ l(n) − 1 bits of the sequence of an output sequence s, can pre-
dict the (r + 1)-st bit of s with probability significantly greater than 1/2.
In the following, g(.){1,...,I−1} is the notation for the first I − 1 bits of the
generator’s output g(.), and g(.)I represents the I-th bit of this output.

4

Figure 1: Statistical experiment for the cryptographic security of a PRBG

Definition 3 (Next bit unpredictable, [2])
Let g : {0, 1}n −→ {0, 1}l(n) be an efficient (computable in polynomial
time) function ensemble, with l() being a polynomial with l(n) > n. Let
X and I be random variables uniformly distributed respectively on {0, 1}n

and on {1, ..., l(n)}. Then g is a next bit unpredictable PRBG, if for all
adversaries A running in polynomial time the success probability (prediction
probability) of A for g

P [A(I, g(X){1,...,I−1}) = g(X)I] <
1

p(n)
∀p

where p is a polynomial.

Figure 2 explains how the next-bit test works: first a seed and a number
i− 1 of bits are randomly chosen; the adversary must then predict the i-th
bit with the first i− 1 bits as input in polynomial time.

The following theorem states that the two above definitions are equivalent :

Theorem 1 (Yao, [7])
A PRBG passes the next-bit test if and only if it passes all poly-time sta-
tistical tests.

5

Figure 2: Statistical experiment for the next-bit test

Sketch of the proof :

Assume first that the PRBG does not pass the next-bit test. It is clear that
such a poly-time algorithm is a statistical test that allows to distinguish
the output string from a truly-random string : guess the last bit from the
previous ones and check whether it is the same as the actual last bit.

On the other hand, assume that the PRBG passes the next-bit test, i.e.,
for every poly-bounded machine, every bit looks random, given all the pre-
vious bits (i.e., the guessing probability is close to 1/2). This clearly implies
that the entire string looks random (i.e., is chosen according to a uniform
distribution).

2

6

3 The Blum-Blum-Shub Generator

In this section, we present the Blum-Blum-Shub PRBG generator, which
was described in [1]. We need first some number theory background to
understand its foundations. [6] was used as a reference book.

3.1 Some number-theoretic preliminaries

First of all, we recall that the Chinese Remainder Theorem (CRT) specifies
a one-to-one transformation between elements a of Zm, where
m = m1 · m2 · ... · mk and lists (r1, r2, ...rk) of residues, when the moduli
m1, m2, ..., mk are pairwise relatively prime. We shall refer to the list
(r1, r2, ..., rk) as the CRT-transform of a. The two main interesting prop-
erties of this transform are the following : first, the CRT-transform of the
product of two numbers a1 and a2 in Zm is the component-wise product of
the CRT-transforms of a1 and a2; second, a is an invertible element in Zm

if and only if the moduli ri are invertible elements of Zmi for all 1 ≤ i ≤ k
respectively.

We define first the concepts of quadratic residues and of Legendre symbol :

Definition 4 (Quadratic Residues)
Let n ∈ N. Then a ∈ Z∗

n is called a quadratic residue modulo n if there
exists b ∈ Z∗

n such that
a ≡ b2 (mod n)

The set of quadratic residues modulo n is denoted by QRn. Furthermore,

QNRn := Z∗
n \QRn

is called the set of quadratic non-residues.

Example 1
For Z∗

23, we have

QR23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}

and
QNR23 = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}

Definition 5 (Legendre symbol)
Let p be an odd prime. For a ∈ Z∗

p, the Legendre symbol
(

a
p

)
is defined as

(
a

p

)
=

0 p|a
1 a ∈ QRp

−1 a /∈ QRp

7

The following theorem shows how to compute the Legendre symbol of an
element a ∈ Z∗

p:

Theorem 2
Let p be an odd prime, and let a ∈ Z∗

p. Then(
a

p

)
≡ a

p−1
2 (mod p)

Proof :

Let a ∈ QRp, i.e., a = b2 in Z∗
p for some b ∈ Z∗

p. Then

a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 (mod p)

because of Fermat’s little Theorem.
Let a ∈ QNRp. Let g be a generator of Z∗

p (a cyclic group of order p − 1).
Then a = gt for some odd t = 2s + 1 (otherwise, a = gt = g2s = (gs)2), and

a
p−1
2 ≡ (gt)

p−1
2 ≡ (g2s)

p−1
2 · g

p−1
2 ≡ g

p−1
2 (mod p)

Now (g
p−1
2)2 = 1, hence g

p−1
2 ∈ {−1, 1}. Because g is a generator of Z∗

p, the

order of g is equal to p− 1, and g
p−1
2 = −1.

2

Theorem 3
Let p be an odd prime. Then

|QRp| = |QNRp| = (p− 1)/2

Proof :

Let g be a generator of Z∗
p. By the proof of Theorem 2, gt ∈ QRp holds if

and only if t ∈ {0, 1, 2, ..., p− 2} is even, which is the case for half of the t’s.

2

Another interesting property of the Legendre symbol is the following:

Theorem 4
Let p be an odd prime, a and b integers. Then(

a

p

)
·
(

b

p

)
=
(

ab

p

)

8

Proof :

This property is an immediate consequence of Theorem 2:

a
p−1
2 · b

p−1
2 = (a · b)

p−1
2 (mod p)

2

We now define the Jacobi symbol, which is in fact the analogous of the
Legendre symbol for composite moduli:

Definition 6 (Jacobi symbol)
Let n be an odd integer with prime factorization

n =
∏

i

pei
i

Let a ∈ Z∗
n. Then the Jacobi symbol

(
a
n

)
is defined by(a

n

)
:=
∏

i

(
a

pi

)ei

(1)

The Jacobi symbol has the following multiplicative property:

Theorem 5
Let n be an odd integer, and let a and b be integers. Then(

ab

n

)
=
(a

n

)
·
(

b

n

)
Proof :

Using Definition 6 and Theorem 4, we have:(
ab

n

)
=
∏

i

(
ab

pi

)ei

=
∏

i

(
a

pi

)ei

·
∏

i

(
b

pi

)ei

=
(a

n

)
·
(

b

n

)
which concludes the proof.

2

We are now interested in the number of square roots of each quadratic
residue in a general multiplicative group. The three next lemmas are useful
for proving Theorem 6.

Lemma 1
Let p be a prime and α a non-zero element of Z∗

p; then we have

−α = α ⇐⇒ p = 2

9

Proof :

Let Rp(x) be the reduction of x modulo p, often referred to as “x (mod p)”,
for integers x. We have:

α = −α ⇒ 2α = 0 ⇒ Rp(2α) = 0 ⇒ p | 2α

For 1 ≤ α < p, we have p | 2 and finally p = 2.
In the other way, we have

p = 2 ⇒ p | 2α ⇒ Rp(2α) = 0 ⇒ α = −α

2

Lemma 2
For p, an odd prime and for α, β, non-zero elements of Z∗

p, we have

α2 = β2 ⇐⇒ α = β ∨ α = −β

Proof :

We have

α2 = β2 ⇔ α2 − β2 = 0 ⇔ (α− β)(α + β) = 0 ⇔

α = β
α = −β
α = β ∧ α = −β

Suppose that α = β is true. Then, from α = −β it follows that also α = −α
is true, which is impossible for an odd prime because of Lemma 1. Thus, the
two equations α = β and α = −β cannot hold simultaneously, from which
we can conclude that α2 = β2 ⇔ α = β ∨ α = −β.

2

This lemma implies that each quadratic residue from Z∗
p, p being an odd

prime, has exactly 2 square roots α1 and α2 such that 1 ≤ α1 ≤ (p − 1)/2
and (p + 1)/2 ≤ α2 ≤ (p− 1).

Lemma 3
Let n = p1 · p2 · ... · pk, where p1, ..., pk are distinct odd primes and k ≥ 2.
An element α of Z∗

n is a quadratic residue modulo n if and only if each
component of its CRT transform with respect to the moduli p1, ..., pk is a
quadratic residue of Z∗

pi
, where pi is the modulus corresponding to that

component.

10

Proof :

The CRT transform of α ∈ Z∗
n with respect to p1, ..., pk is

(α mod p1, ..., α mod pk)

Thus, because of the CRT characterization of the multiplication, we must
prove that for 1 ≤ i ≤ k:

α ∈ QRn ⇐⇒ α mod pi ∈ QRpi

Proof of “=⇒” :
Let α = β2 (mod n), then Rn(α) = Rn(β2). Taking Rpi(.) on both sides,
we get

Rpi(α) = Rpi(Rn(α)) = Rpi(Rn(β2)) = Rpi(β
2) = Rpi(Rpi(β)2)

We conclude that Rpi(β) is a square root of Rpi(α) in Z∗
pi

, so α (mod pi) is
a quadratic residue in Z∗

pi
.

Proof of “⇐=” :
By assumption, we can write the CRT transform of α as (α2

1, α
2
2, ..., α

2
k).

By the properties of the CRT transform, this is the square of an element β
with CRT transform (α1, α2, ..., αk). Hence, α = β2 (mod n) is a quadratic
residue in Z∗

n.

2

Theorem 6
Let n be an odd integer. If a ∈ QRn, then the number of distinct square
roots of a is exactly

2k

where k is the number of distinct prime factors of n.

Proof :

From Lemma 3 we conclude that (±α1, ...,±αk) are square roots of a quadratic
residue in Z∗

n. So, a quadratic residue has at least 2k square roots. But a
quadratic residue in Z∗

pi
has only two square roots (see Lemma 2), so there

are exactly 2k square roots.

2

Theorem 7
Let n = p · q be the product of two distinct odd primes. Exactly half the
elements of Z∗

n have Jacobi symbol +1, the other half have Jacobi symbol
−1. We denote these two sets respectively by Z∗

n(+1) and Z∗
n(−1). None

of the elements of Z∗
n(−1) and exactly half of the elements of Z∗

n(+1) are
quadratic residues.

11

Proof :

By Theorem 3, we know that exactly one half of the elements of Z∗
p and

of Z∗
q are quadratic residues, respectively. Using Definition 6, we see that

there is four possibilities, namely (+1) · (+1), (+1) · (−1), (−1) · (+1) and
(−1) · (−1), to build the product for computing the Jacobi symbol of the
elements of Z∗

n. Only the first possibility gives a quadratic residue modulo n
because of Lemma 3. The last possibility furnishes a quadratic non-residue
whose Jacobi symbol is equal to 1, and the two others a quadratic non-
residue with a Jacobi symbol equal to −1.

2

We now define the Blum primes, and we give the essential properties of these
numbers which are interesting to understand the design of the Blum-Blum-
Shub PRBG:

Definition 7
A prime number p with p ≡ 3 (mod 4) is called a Blum prime number.

An important property of Blum primes is the following:

Theorem 8
Let p be an odd prime number. Then

−1 ∈ QNRp ⇐⇒ p is a Blum prime

Proof :

By Theorem 2, we can write(
−1
p

)
≡ (−1)

p−1
2 (mod p)

p being odd by assumption, it must be congruent to 1 or to 3 modulo 4.
But p−1

2 is odd if and only if p ≡ 3 (mod 4), which concludes the proof.

2

Theorem 9
Let n = p · q be the product of two Blum primes. Let a ∈ QRn. Then a has
exactly four square roots, exactly one of which is in QRn itself.

12

Proof :

The first statement follows from Theorem 6.
By Theorem 8, the element Rp(a) ∈ QRp has two square roots in Z∗

p, namely,
if a = g2s, b = gs and −b. Now,

(−b)
p−1
2 = (−1)

p−1
2 · b

p−1
2

hence (
b

p

)
6=
(
−b

p

)
because p is a Blum prime (see Theorem 8). Hence exactly one of {b,−b}
is in QRp. The same is true modulo q, and the four roots modulo n are the
four “Chinese combinations” of the roots modulo p and q.
Clearly,

a ∈ QRn ⇔ Rp(a) ∈ QRp ∧Rq(a) ∈ QRq

Hence the statement follows by Lemma 3.

2

Definition 8
Let n = p · q be the product of two Blum primes. Let a ∈ QRn. Then

√
a

denotes the square root of a such that
√

a ∈ QRn.

Theorem 10
Let n = p · q be the product of two Blum primes. The function

f : QRn −→ QRn

x 7−→ x2 (mod n)

is a permutation.

Proof :

From Theorem 9 we know that each quadratic residue has exactly one square
root which is a quadratic residue, hence this function is a bijection, or more
precisely, because it is defined from a set to the same set, a permutation.

2

13

3.2 Definition of the Blum-Blum-Shub PRBG

The Blum-Blum-Shub PRBG (described in [1]) is based on the function
defined in Theorem 10.

Definition 9
The Blum-Blum-Shub PRBG is the following algorithm :

❍ Generate p and q, two big Blum prime numbers.

❍ n := p · q

❍ Choose s ∈R [1, n− 1], the random seed.

❍ x0 := s2 (mod n)

❍ The sequence is defined as xi := x2
i−1 (mod n) and zi := parity(xi).

❍ The output is z1, z2, z3, ...

where parity(xi) is defined as R2(xi).

Example 2
Let n = p · q = 7 · 19 = 133 and s = 100. Then we have x0 = 1002

(mod 133) = 25. The sequence x1 = 252 (mod 133) = 93, x2 = 932

(mod 133) = 4, x3 = 42 (mod 133) = 16, x4 = 162 (mod 133) = 123
produces the output 1, 0, 0, 1.

14

4 Security of the Blum-Blum-Shub Generator

4.1 Introduction

The cryptographic security of the Blum-Blum-Shub PRBG follows from an
assumption on a number-theoretic problem, the so-called quadratic residu-
osity problem, which is defined as follows, together with the concept of solver
for this problem (see [1]):

Definition 10 (Quadratic Residuosity Problem and Solver)
The quadratic residuosity problem with parameters n and x is to decide
for x ∈ Z∗

n(+1) whether x is a quadratic residue or not. A solver for the
quadratic residuosity problem is a poly-time algorithm A(n, x) which out-
puts a 1 if and only if x is a quadratic residue in Z∗

n(+1) and a 0 otherwise.

The security of the Blum-Blum-Shub PRBG is based on the following as-
sumption (see [1]):

Assumption 1
Let t be a positive integer, and n be the product of two distinct odd primes,
A(n, x) be a solver for the quadratic residuosity problem and s := dlog2 ne
be the binary length of n. Then for s sufficiently large and for all but
1/st fraction of numbers n of length s, the probability that A(n, x) decides
correctly whether x is a quadratic residue in Z∗

n or not for n fixed and x
selected uniformly from among all element of Z∗

n(+1), is less than 1− 1/st.

In their paper [1], Blum, Blum and Shub prove, assuming that the factors of
n are necessary for deciding quadratic residuosity of an element x ∈ Z∗

n(+1),
that these factors are necessary to have even an little advantage in guessing
the parity of x−1 :=

√
x0, given the parameters n and x0, in polynomial

time. We can remark here that guessing the parity of the element to the left
or to the right of a pseudo-random sequence’s element is clearly equivalent.
A pseudo-random sequence that “looks” random only in one direction is
surely not a cryptographic secure one.

To prove that the generator is secure, “modulo” the quadratic residuosity
assumption, Blum, Blum and Shub show first how an advantage in guessing
the parity of an element to the left of the sequence can be converted in
an advantage for determining quadratic residuosity. Then they use a result
from Goldwasser and Micali to show the relation between their generator
and the quadratic residuosity assumption. The goal of the next section is
to give an overview of these constructions.

4.2 The proof of security

First we give the formal definitions of an 1/P -advantage in guessing the
parity of x−1 and in the quadratic residuosity problem. They come both

15

from [5].

In the following, I denotes an infinite set of indices; N = {Nk : k ∈ I} de-
notes a family of non-empty sets Nk of nonnegative integers with ∀n ∈ Nk,
n having binary length of exactly k. Furthermore, we assume that A(n, x0)
is an algorithm which takes as input an integer n = p · q product of two
Blum primes and an element x0 := x2

−1 (mod n) ∈ QRn and that it gives
as output the parity of x−1; B(n, x) is an algorithm which takes as input n
and an element x ∈ Z∗

n(+1) for which the quadratic residuosity has to be
determined, and that B(n, x) outputs a 1 if x ∈ QRn and a 0 if x ∈ QNRn.

Definition 11 (1/P -advantage in the parity of x−1)
Let P be a polynomial. A poly-time algorithm A(n, x) has a 1/P -advantage
for computing the parity of x−1 :=

√
x0 for the family N , if, for all but a

finite number of indices k ∈ I, the following property holds ∀n ∈ Nk:

P [x ∈ QRn|A(n, x0) = parity(
√

x0 (mod n))] ≥ 1
2

+
1

P (k)

Definition 12 (1/P -advantage in the quadratic residuosity)
Let P be a polynomial. A poly-time algorithm B(n, x) has a 1/P -advantage
for determining quadratic residuosity for the family N if, for all but a finite
number of indices k ∈ I, the following property holds ∀n ∈ Nk:

1
2
(P [B(n, x) = 1|x ∈ QRn] + P [B(n, x) = 0|x /∈ QRn]) ≥ 1

2
+

1
P (k)

where for each n ∈ Nk, x ranges over Z∗
n(+1).

The first step of the proof of security is based on the following theorem,
which describes the reduction from an advantage over the parity of x−1 to
an advantage over the quadratic residuosity :

Theorem 11 ([5], original version in [1])
Let n be the product of two Blum primes. An 1/P -advantage for deter-
mining parity of x−1 :=

√
x0 given the quadratic residue x0 ∈ QRn can

be converted efficiently and uniformly to an 1/P -advantage for determining
quadratic residuosity of x ∈ Z∗

n(+1).

The proof of Theorem 11 is based on the following lemma :

Lemma 4
Let n = p · q be the product of two Blum primes. ∀x ∈ Z∗

n(+1),

x ∈ QRn ⇐⇒ parity(x) = parity(
√

x2 (mod n))

16

Proof :

“=⇒” : By assumption, x ∈ QRn. Then x is the unique square root of x2

(mod n) (see Definition 8).
“⇐=” : Suppose first that x /∈ QRn; let x0 :=

√
x2 (mod n) be the unique

square roots of x2 which is a quadratic residue. We have n = p · q. By
assumption,

(
x
n

)
= 1. Using Theorem 8,we have:(

−1
p

)
=
(
−1
q

)
= −1

Hence (
−1
n

)
=
(
−1
p

)
·
(
−1
q

)
= 1

and

∀x ∈ Z∗
n

(
−x

n

)
=
(x

n

)
which is a consequence of the multiplicative property of the Jacobi symbol
(see Theorem 5). We conclude that x = −x0 and from Lemma 1 we know
that x 6= x0, so they must have different parities, n being odd, which is a
contradiction.

2

By assumption we have an algorithm A(n, x0) with a polynomial advantage
in computing the parity of x−1 :=

√
x0. The goal is now to find an algorithm

B(n, x) with a polynomial advantage in solving the problem of quadratic
residuosity which uses A(n, x0) as subroutine.

Proof of Theorem 11 :

By assumption we have an algorithm with a polynomial advantage in com-
puting the parity of x−1 :=

√
x0. Let B(n, x) be the following algorithm:

B(n, x) = A(n, x2 (mod n))⊕ parity(x)⊕ 1

Here, ⊕ is a notation for the XOR binary operation. The construction of
B(n, x) is illustrated in Figure 3. It is clear from this definition that B(n, x)
outputs a 1 if and only if A(n, x) predicts the good parity of

√
x2. We define

now the following sets :

An := {x ∈ QRn : A(n, x) = parity(
√

x (mod n))}

which is the set of quadratic residues whose square root’s parity is predicted
right by A(n, x). The next set defines the squared quadratic residues for
which A(n, x) works fine:

Xn := {x ∈ QRn : x2 (mod n) ∈ An}

17

Figure 3: Description of the algorithm B(n, x)

For each quadratic residue x2 whose square root’s parity is good predicted by
A(n, x), there is bijectively an element −x ∈ Z∗

n(+1)\QRn with x2 = (−x)2

for which A(n, x) produces a false output; Yn is the set of these elements:

Yn := {x ∈ Z∗
n(+1) \QRn : x2 (mod n) ∈ An}

The set Wn is the union of the two last disjunct sets :

Wn := {x ∈ Z∗
n(+1) : x2 (mod n) ∈ An}

Furthermore, |Xn| = |Yn| = |An|. This equality holds because we can define
bijectively the following relation: for each a2 ∈ An, we have exactly one
x ∈ Xn with x := a =

√
a2 and exactly one y ∈ Yn with y := −a. Following

these considerations, we have clearly:

P [x ∈ Z∗
n(+1) : x ∈ Wn] =

|Wn|
|Z∗

n(+1)|

=
|Xn|+ |Yn|

2|QRn|
=

|AN |
|QRn|

= P [x ∈ QRn : x ∈ An]

Taking Definition 12, we must now show that

1
2
(P [B(n, x) = 1|x ∈ QRn] + P [B(n, x) = 0|x /∈ QRn]) ≥ 1

2
+

1
P (k)

18

Using Theorem 3 and Lemma 4, we have

P [B(n, x) = 1|x ∈ QRn] =
P [B(n, x) = 1 ∧ x ∈ QRn]

P [x ∈ QRn]
=

P [x ∈ Z∗
n(+1) : x ∈ Xn]

1
2

while

P [B(n, x) = 0|x ∈ QNRn] =
P [B(n, x) = 0 ∧ x ∈ QNRn]

P [x ∈ QNRn]
=

P [x ∈ Z∗
n(+1) : x ∈ Yn]

1
2

which gives us

1
2

(P [B(n, x) = 1|x ∈ QRn] + P [B(n, x) = 0|x /∈ QRn])

=
1
2

(
P [x ∈ Z∗

n(+1) : x ∈ Xn]
1
2

+
P [x ∈ Z∗

n(+1) : x ∈ Yn]
1
2

)
= P [x ∈ Z∗

n(+1) : x ∈ Xn] + P [x ∈ Z∗
n(+1) : x ∈ Yn]

= P [x ∈ QRn : x ∈ An]

≥ 1
2

+
1

P (k)

which concludes the proof.

2

It is now possible to strengthen Definition 12 as follows :

Definition 13 (1− 1/P -advantage in the quadratic residuosity, [3])
A poly-time algorithm A(n, x) has a 1/P -advantage for determining quadratic
residuosity for the family N if, for all but a finite number of indices k ∈ I,
the following property holds ∀n ∈ Nk:

1
2
(P [A(n, x) = 1|x ∈ QRn] + P [A(n, x) = 0|x /∈ QRn]) ≥ 1− 1

P (k)

where for each n ∈ Nk, x ranges over Z∗
n(+1).

The following theorem is the second part in the proof of security :

Theorem 12 (Goldwasser & Micali, [3])
An 1/P -advantage for determining quadratic residuosity can be amplified
uniformly and efficiently in an 1− 1/P -advantage.

19

Sketch of the proof ([1]):

Let x ∈ Z∗
n(+1) be an element whose quadratic residuosity is to be de-

termined. For this goal, select r at random with an uniform probability
over Z∗

n. Compute x · r2 (mod n). We have now the following properties :
for x ∈ QRn, x · r2 (mod n) is uniformly distributed over QRn and for
x ∈ QNRn, x · r2 (mod n) is uniformly distributed over Z∗

n(+1) \ QRn.
Test each of the resulting numbers, x ·r2 (mod n), for quadratic residuosity.
Taking the majority vote amplifies the advantage as much as one likes.

2

The main theorem is the following :

Theorem 13 (Blum, Blum, Shub, [1])
The Blum-Blum-Shub PRBG is an unpredictable (cryptographic secure)
generator, i.e., for each probabilistic poly-time predicting algorithm A(n, x),
and positive integer t, A has at most an 1/st-advantage for n in predicting
sequences to the left, s being the length of n, for sufficiently large n and for
all but 1/st prescribed numbers n of length s.

Proof :

Suppose we have a predicting algorithm A(n, x) with an 1/P -advantage for
n. This can be converted efficiently and uniformly into an algorithm with an
1/P -advantage in guessing the parity of x−1 given an arbitrary x0 ∈ QRn.
From seed x0 generate the sequence b0b1b2.... Then the parity of x−1 is b−1.
We can now convert Theorem 11 to a procedure guessing quadratic residu-
osity with an amplified advantage (see Theorem 12) to get a contradiction
to the Assumption 1.

2

20

References

[1] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of two
pseudo-random number generators. In R. L. Rivest, A. Sherman, and
D. Chaum, editors, Proc. CRYPTO 82, pages 61–78, New York, 1983.
Plenum Press.

[2] M. Blum and S. Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Computing, 13(4):850–863,
November 1984.

[3] S. Goldwasser and S. Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In Proc. 14th ACM
Symp. on Theory of Computing, pages 365–377, San Francisco, 1982.
ACM.

[4] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, Reading, MA, USA, third
edition, 1997.

[5] E. Kranakis. Primality and Cryptography. Wiley-Teubner Series in Com-
puter Science, 1986.

[6] A. J. (Alfred J.) Menezes, Paul C. Van Oorschot, and Scott A. Van-
stone. Handbook of applied cryptography. The CRC Press series on
discrete mathematics and its applications. CRC Press, 2000 N.W. Cor-
porate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[7] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd
IEEE Symp. on Foundations of Comp. Science, pages 80–91, Chicago,
1982. IEEE.

21

